Dagmar Haase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9127694/publications.pdf Version: 2024-02-01

		9784	12596
221	20,006	73	132
papers	citations	h-index	g-index
232	232	232	13699
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio, 2014, 43, 413-433.	5.5	758
2	Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 2016, 21, .	2.3	753
3	The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of the Total Environment, 2017, 579, 1215-1227.	8.0	748
4	Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7687-7692.	7.1	682
5	Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landscape and Urban Planning, 2014, 122, 129-139.	7.5	515
6	Advancing Urban Ecology toward a Science of Cities. BioScience, 2016, 66, 198-212.	4.9	491
7	Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research. Environmental Impact Assessment Review, 2015, 50, 25-34.	9.2	479
8	Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy, 2012, 29, 521-535.	5.6	379
9	Urban green space availability in European cities. Ecological Indicators, 2016, 70, 586-596.	6.3	374
10	Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews, 2007, 26, 1301-1312.	3.0	350
11	Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecological Indicators, 2015, 52, 490-497.	6.3	318
12	Greening cities – To be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat International, 2017, 64, 41-48.	5.8	313
13	Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy, 2016, 57, 405-417.	5.6	310
14	A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Natural Hazards, 2009, 48, 17-39.	3.4	287
15	Understanding and quantifying landscape structure – A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 2015, 295, 31-41.	2.5	277
16	Diversifying European agglomerations: evidence of urban population trends for the 21st century. Population, Space and Place, 2011, 17, 236-253.	2.3	276
17	Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 2020, 3, 16-24.	23.7	267
18	Green spaces of European cities revisited for 1990–2006. Landscape and Urban Planning, 2013, 110, 113-122.	7.5	266

#	Article	IF	CITATIONS
19	Ecosystem properties, potentials and services – The EPPS conceptual framework and an urban application example. Ecological Indicators, 2012, 21, 7-16.	6.3	258
20	Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecological Indicators, 2013, 29, 179-190.	6.3	256
21	Environmental decision support systems (EDSS) development – Challenges and best practices. Environmental Modelling and Software, 2011, 26, 1389-1402.	4.5	251
22	Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecological Indicators, 2015, 55, 146-158.	6.3	247
23	Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape and Urban Planning, 2012, 104, 95-104.	7.5	241
24	Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions: an Integrated Multiscale Framework Applied to the Leipzig-Halle Region, Germany. Ecology and Society, 2012, 17, .	2.3	239
25	The carbon footprint of urban green space—A life cycle approach. Landscape and Urban Planning, 2012, 104, 220-229.	7.5	225
26	Key insights for the future of urban ecosystem services research. Ecology and Society, 2016, 21, .	2.3	219
27	Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science and Policy, 2016, 62, 45-56.	4.9	213
28	Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosystem Services, 2017, 24, 147-159.	5.4	202
29	Advancing understanding of the complex nature of urban systems. Ecological Indicators, 2016, 70, 566-573.	6.3	197
30	Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy, 2009, 26, 414-424.	5.6	190
31	Does urban sprawl drive changes in the water balance and policy?. Landscape and Urban Planning, 2007, 80, 1-13.	7.5	185
32	Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE, 2013, 8, e66531.	2.5	184
33	Effects of urbanisation on the water balance – A long-term trajectory. Environmental Impact Assessment Review, 2009, 29, 211-219.	9.2	182
34	Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban Forestry and Urban Greening, 2019, 40, 4-16.	5.3	182
35	Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute?. Landscape and Urban Planning, 2019, 182, 12-21.	7.5	181
36	Scale and context dependence of ecosystem service providing units. Ecosystem Services, 2015, 12, 157-164.	5.4	179

#	Article	IF	CITATIONS
37	Actors and factors in land-use simulation: The challenge of urban shrinkage. Environmental Modelling and Software, 2012, 35, 92-103.	4.5	174
38	Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Natural Hazards, 2011, 58, 731-751.	3.4	169
39	Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. Ambio, 2014, 43, 407-412.	5.5	165
40	Exploring city-wide patterns of cultural ecosystem service perceptions and use. Ecological Indicators, 2017, 77, 80-95.	6.3	159
41	Evolving Reurbanisation? Spatio-temporal Dynamics as Exemplified by the East German City of Leipzig. Urban Studies, 2010, 47, 967-990.	3.7	155
42	Creative intervention in a dynamic city: A sustainability assessment of an interim use strategy for brownfields in Leipzig, Germany. Landscape and Urban Planning, 2011, 100, 189-201.	7.5	154
43	Conceptualizing the nexus between urban shrinkage and ecosystem services. Landscape and Urban Planning, 2014, 132, 159-169.	7.5	153
44	Enabling Green and Blue Infrastructure to Improve Contributions to Human Well-Being and Equity in Urban Systems. BioScience, 2019, 69, 566-574.	4.9	150
45	Environmental justice in the context of urban green space availability, accessibility, and attractiveness in postsocialist cities. Cities, 2020, 106, 102862.	5.6	150
46	Dealing with Sustainability Trade-Offs of the Compact City in Peri-Urban Planning Across European City Regions. European Planning Studies, 2013, 21, 473-497.	2.9	147
47	An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environmental Modelling and Software, 2017, 93, 127-145.	4.5	147
48	The urban-to-rural gradient of land use change and impervious cover: a long-term trajectory for the city of Leipzig. Journal of Land Use Science, 2010, 5, 123-141.	2.2	127
49	Multi-criteria assessment of socio-environmental aspects in shrinking cities. Experiences from eastern Germany. Environmental Impact Assessment Review, 2008, 28, 483-503.	9.2	126
50	Urban Ecology of Shrinking Cities: An Unrecognized Opportunity?. Nature and Culture, 2008, 3, 1-8.	0.5	125
51	Omnipresent Sprawl? A Review of Urban Simulation Models with Respect to Urban Shrinkage. Environment and Planning B: Planning and Design, 2010, 37, 265-283.	1.7	125
52	Valuing post-mining landscapes using an ecosystem services approach—An example from Germany. Ecological Indicators, 2012, 18, 567-574.	6.3	122
53	High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of the Total Environment, 2020, 729, 138244.	8.0	118
54	Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosystem Services, 2017, 27, 161-171.	5.4	117

#	Article	IF	CITATIONS
55	Structural Diversity: A Multi-dimensional Approach to Assess Recreational Services in Urban Parks. Ambio, 2014, 43, 480-491. Nature-based solutions for the contemporary city/Re-naturing the city/Reflections on urban	5.5	115
56	landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and climate change adaptation: brownfield greening as an adaptation strategy for vulnerable communities?/Delivering green infrastructure through planning: insights from practice in Fingal, Ireland/Planning for biophilic cities: from theory to practice. Planning Theory and Practice,	1.7	115
57	2016, 17, 267-300. Birds and the City: Urban Biodiversity, Land Use, and Socioeconomics. Ecology and Society, 2009, 14, .	2.3	112
58	Remote sensing in urban planning: Contributions towards ecologically sound policies?. Landscape and Urban Planning, 2020, 204, 103921.	7.5	111
59	Mapping the diversity of regulating ecosystem services in European cities. Global Environmental Change, 2014, 26, 119-129.	7.8	109
60	The impact of urban regrowth on the built environment. Urban Studies, 2017, 54, 2683-2700.	3.7	109
61	Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landscape and Urban Planning, 2014, 125, 105-116.	7.5	96
62	The effect of multi-dimensional indicators on urban thermal conditions. Journal of Cleaner Production, 2018, 177, 115-123.	9.3	95
63	Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions. Land, 2020, 9, 73.	2.9	95
64	Modeling and simulating residential mobility in a shrinking city using an agent-based approach. Environmental Modelling and Software, 2010, 25, 1225-1240.	4.5	90
65	Reflections about blue ecosystem services in cities. Sustainability of Water Quality and Ecology, 2015, 5, 77-83.	2.0	86
66	Linkages between ecosystem services provisioning, urban growth and shrinkage – A modeling approach assessing ecosystem service trade-offs. Ecological Indicators, 2014, 42, 73-94.	6.3	84
67	Not Simply Green: Nature-Based Solutions as a Concept and Practical Approach for Sustainability Studies and Planning Agendas in Cities. Land, 2020, 9, 19.	2.9	84
68	Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment, 2021, 755, 142661.	8.0	83
69	Assessing climate impacts of planning policies—An estimation for the urban region of Leipzig (Germany). Environmental Impact Assessment Review, 2011, 31, 97-111.	9.2	82
70	Ecosystem services in urban land use planning: Integration challenges in complex urban settings—Case of Stockholm. Ecosystem Services, 2016, 22, 204-212.	5.4	79
71	Does demographic change affect land use patterns?. Land Use Policy, 2010, 27, 726-737.	5.6	78
72	Spatial variation of green space equity and its relation with urban dynamics: A case study in the region of Munich. Ecological Indicators, 2018, 93, 512-523.	6.3	78

#	Article	IF	CITATIONS
73	Relating SDG11 indicators and urban scaling – An exploratory study. Sustainable Cities and Society, 2020, 52, 101853.	10.4	78
74	Changes to Central European landscapes—Analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land Use Policy, 2007, 24, 248-263.	5.6	77
75	Guidelines for the "Perfect Inner City― Discussing the Appropriateness of Monitoring Approaches for Reurbanization. European Planning Studies, 2008, 16, 1075-1100.	2.9	77
76	Flood risk assessment in european river basins—concept, methods, and challenges exemplified at the mulde river. Integrated Environmental Assessment and Management, 2009, 5, 17-26.	2.9	76
77	Towards sustainable settlement growth: A new multi-criteria assessment for implementing environmental targets into strategic urban planning. Environmental Impact Assessment Review, 2012, 32, 195-210.	9.2	75
78	On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City. PLoS ONE, 2016, 11, e0160471.	2.5	75
79	Ecosystem services in spatial planning and strategic environmental assessment—A European and Portuguese profile. Land Use Policy, 2015, 48, 158-169.	5.6	74
80	Shrinking Cities, Biodiversity and Ecosystem Services. , 2013, , 253-274.		73
81	Is urban spatial development on the right track? Comparing strategies and trends in the European Union. Landscape and Urban Planning, 2019, 181, 22-37.	7.5	72
82	The effects of growth, shrinkage, population aging and preference shifts on urban development—A spatial scenario analysis of Berlin, Germany. Land Use Policy, 2016, 52, 240-254.	5.6	71
83	Integrating solutions to adapt cities for climate change. Lancet Planetary Health, The, 2021, 5, e479-e486.	11.4	70
84	The impact of the COVID-19 pandemic on the use of and attitudes towards urban forests and green spaces: Exploring the instigators of change in Belgium. Urban Forestry and Urban Greening, 2021, 65, 127305.	5.3	70
85	Co-creating urban green infrastructure connecting people and nature: A guiding framework and approach. Journal of Environmental Management, 2019, 233, 757-767.	7.8	69
86	Towards a flood risk assessment ontology – Knowledge integration into a multi-criteria risk assessment approach. Computers, Environment and Urban Systems, 2013, 37, 82-94.	7.1	68
87	Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecological Indicators, 2018, 85, 190-203.	6.3	65
88	Compact or spread? A quantitative spatial model of urban areas in Europe since 1990. PLoS ONE, 2018, 13, e0192326.	2.5	61
89	Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecological Indicators, 2016, 70, 574-585.	6.3	60
90	Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city?. Science of the Total Environment, 2014, 496, 289-298.	8.0	59

#	Article	IF	CITATIONS
91	Urban shrinkage in Germany: An entangled web of conditions, debates and policies. Cities, 2017, 69, 116-123.	5.6	58
92	Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series. Landscape and Urban Planning, 2020, 202, 103857.	7.5	58
93	Considering the ways biocultural diversity helps enforce the urban green infrastructure in times of urban transformation. Current Opinion in Environmental Sustainability, 2016, 22, 7-12.	6.3	57
94	The impact of different urban dynamics on green space availability: A multiple scenario modeling approach for the region of Munich, Germany. Ecological Indicators, 2018, 93, 1-12.	6.3	57
95	Ageing and population shrinking: implications for sustainability in the urban century. Npj Urban Sustainability, 2021, 1, .	8.0	55
96	Simulating Demography and Housing Demand in an Urban Region under Scenarios of Growth and Shrinkage. Environment and Planning B: Planning and Design, 2012, 39, 229-246.	1.7	53
97	Green roof effects on daytime heat in a prefabricated residential neighbourhood in Berlin, Germany. Urban Forestry and Urban Greening, 2020, 53, 126738.	5.3	53
98	Surface runoff in urban areas: The role of residential cover and urban growth form. Journal of Cleaner Production, 2020, 262, 121421.	9.3	53
99	Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecological Indicators, 2020, 114, 106288.	6.3	51
100	Mediating Sustainability and Liveability—Turning Points of Green Space Supply in European Cities. Frontiers in Environmental Science, 2019, 7, .	3.3	50
101	Urban change as an untapped opportunity for climate adaptation. Npj Urban Sustainability, 2021, 1, .	8.0	49
102	The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness. Applied Energy, 2019, 254, 113671.	10.1	48
103	Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landscape and Urban Planning, 2019, 182, 44-54.	7.5	48
104	Exploring local consequences of two land-use alternatives for the supply of urban ecosystem services in Stockholm year 2050. Ecological Indicators, 2016, 70, 615-629.	6.3	47
105	Integration of ecosystem services in spatial planning: a survey on regional planners' views. Landscape Ecology, 2014, 29, 1287-1300.	4.2	46
106	Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 2019, 11, 2356.	4.0	46
107	Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Science of the Total Environment, 2022, 841, 156687.	8.0	46
108	Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosystem Services, 2018, 30, 73-85.	5.4	45

#	Article	IF	CITATIONS
109	Applying a novel urban structure classification to compare the relationships of urban structure and surface temperature in Berlin and New York City. Applied Geography, 2014, 53, 427-437.	3.7	44
110	Simulation Models on HumanNature Interactions in Urban Landscapes: A Review Including Spatial Economics, System Dynamics, Cellular Automata and Agent-based Approaches. Living Reviews in Landscape Research, 0, 3, .	0.0	43
111	Urban green infrastructure – connecting people and nature for sustainable cities. Urban Forestry and Urban Greening, 2019, 40, 1-3.	5.3	42
112	Urban Population Development in Europe, 1991–2008: The Examples of Poland and the UK. International Journal of Urban and Regional Research, 2012, 36, 1326-1348.	2.4	41
113	A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water (Switzerland), 2017, 9, 936.	2.7	41
114	The future of urban sustainability: Smart, efficient, green or just? Introduction to the special issue. Sustainable Cities and Society, 2019, 51, 101761.	10.4	41
115	Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sensing, 2019, 11, 1966.	4.0	40
116	Biocultural diversity (BCD) in European cities – Interactions between motivations, experiences and environment in public parks. Urban Forestry and Urban Greening, 2020, 48, 126501.	5.3	40
117	Practices and Lessons Learned in Coping with Climatic Hazards at the River-Basin Scale: Floods and Droughts. Ecology and Society, 2008, 13, .	2.3	39
118	Shrinking Cities as Retirement Cities? Opportunities for Shrinking Cities as Green Living Environments for Older Individuals. Environment and Planning A, 2013, 45, 1455-1473.	3.6	38
119	Participatory selection of ecosystem services for spatial planning: Insights from the Lisbon Metropolitan Area, Portugal. Ecosystem Services, 2016, 18, 87-99.	5.4	37
120	Global Urbanization. , 2018, , 19-44.		37
121	Holocene floodplains and their distribution in urban areas—functionality indicators for their retention potentials. Landscape and Urban Planning, 2003, 66, 5-18.	7.5	35
122	Participatory modelling of vulnerability and adaptive capacity in flood risk management. Natural Hazards, 2013, 67, 77-97.	3.4	35
123	Adding Natural Areas to Social Indicators of Intra-Urban Health Inequalities among Children: A Case Study from Berlin, Germany. International Journal of Environmental Research and Public Health, 2016, 13, 783.	2.6	35
124	Pathways of demographic and urban development and their effects on land take and ecosystem services: The case of Lisbon Metropolitan Area, Portugal. Land Use Policy, 2019, 82, 181-194.	5.6	35
125	Looking beyond boundaries: Revisiting the rural-urban interface of Green Space Accessibility in Europe. Ecological Indicators, 2020, 113, 106245.	6.3	34
126	Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Frontiers in Environmental Science, 2021, 9, .	3.3	34

#	Article	IF	CITATIONS
127	Impact of summer heat on urban park visitation, perceived health and ecosystem service appreciation. Urban Forestry and Urban Greening, 2021, 60, 127058.	5.3	32
128	The Theorized Urban Gradient (TUG) method—A conceptual framework for socio-ecological sampling in complex urban agglomerations. Ecological Indicators, 2014, 36, 100-110.	6.3	31
129	Stewardship of the Biosphere in the Urban Era. , 2013, , 719-746.		31
130	Multi-Variate Analyses of Flood Loss in Can Tho City, Mekong Delta. Water (Switzerland), 2016, 8, 6.	2.7	30
131	Integrating the third dimension into the concept of urban ecosystem services: A review. Ecological Indicators, 2017, 72, 374-398.	6.3	30
132	Carbon Pools of Berlin, Germany: Organic Carbon in Soils and Aboveground in Trees. Urban Forestry and Urban Greening, 2020, 54, 126777.	5.3	30
133	A conceptual model of the social–ecological system of nature-based solutions in urban environments. Ambio, 2021, 50, 335-345.	5.5	30
134	Does the Ecosystem Service Concept Reach its Limits in Urban Environments?. Landscape Online, 0, 51, 1-22.	0.0	30
135	Urban green space interaction and wellbeing – investigating the experience of international students in Berlin during the first COVID-19 lockdown. Urban Forestry and Urban Greening, 2022, 70, 127543.	5.3	30
136	Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research. PLoS ONE, 2017, 12, e0189451.	2.5	28
137	Mapping transition potential with stakeholder- and policy-driven scenarios in Rotterdam City. Ecological Indicators, 2016, 70, 630-643.	6.3	25
138	Locating Spatial Opportunities for Nature-Based Solutions: A River Landscape Application. Water (Switzerland), 2018, 10, 1869.	2.7	25
139	Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosystem Services, 2019, 40, 101031.	5.4	25
140	How about water? Urban blue infrastructure management in Romania. Cities, 2021, 110, 103084.	5.6	25
141	Green space functionality under conditions of uneven urban land use development. Journal of Land Use Science, 2010, 5, 143-158.	2.2	24
142	Neighbourhood character affects the spatial extent and magnitude of the functional footprint of urban green infrastructure. Landscape Ecology, 2020, 35, 1605-1618.	4.2	24
143	Traffic-induced noise levels in residential urban structures using landscape metrics as indicators. Ecological Indicators, 2014, 45, 611-621.	6.3	23
144	Determinants of floodplain forest development illustrated by the example of the floodplain forest in the District of Leipzig. Forest Ecology and Management, 2009, 258, 887-894.	3.2	22

#	Article	IF	CITATIONS
145	What are the traits of a social-ecological system: towards a framework in support of urban sustainability. Npj Urban Sustainability, 2021, 1, .	8.0	22
146	Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.	4.0	20
147	Comparing the implicit valuation of ecosystem services from nature-based solutions in performance-based green area indicators across three European cities. Landscape and Urban Planning, 2022, 219, 104310.	7.5	20
148	Earth observation based indication for avian species distribution models using the spectral trait concept and machine learning in an urban setting. Ecological Indicators, 2020, 111, 106029.	6.3	19
149	Mapping heat and traffic stress of urban park vegetation based on satellite imagery - A comparison of Bucharest, Romania and Leipzig, Germany. Urban Ecosystems, 2020, 23, 363-377.	2.4	18
150	Urban Wetlands and Riparian Forests as a Nature-Based Solution for Climate Change Adaptation in Cities and Their Surroundings. Theory and Practice of Urban Sustainability Transitions, 2017, , 111-121.	1.9	18
151	Compact, eco-, hybrid or teleconnected? Novel aspects of urban ecological research seeking compatible solutions to socio-ecological complexities. Ecological Indicators, 2014, 42, 1-5.	6.3	17
152	Permeability of the city – Physical barriers of and in urban green spaces in the city of Halle, Germany. Ecological Indicators, 2021, 125, 107555.	6.3	17
153	Land use impacts of demographic change – lessons from Eastern German urban regions. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 329-344.	0.2	17
154	Discovering the environmental potential of multi-family residential areas for nature-based solutions. A Central European cities perspective. Landscape and Urban Planning, 2021, 206, 103975.	7.5	16
155	Disentangling economic, cultural, and nutritional motives to identify entry points for regulating a wildlife commodity chain. Biological Conservation, 2019, 238, 108177.	4.1	15
156	Methodology for development of a data and knowledge base for learning from existing nature-based solutions in Europe: The CONNECTING Nature project. MethodsX, 2020, 7, 101096.	1.6	15
157	StadtĶkosysteme. , 2016, , .		14
158	Mapping of Soil Total Nitrogen Content in the Middle Reaches of the Heihe River Basin in China Using Multi-Source Remote Sensing-Derived Variables. Remote Sensing, 2019, 11, 2934.	4.0	13
159	Integrated Land Use and Urban Function Impacts on Land Surface Temperature: Implications on Urban Heat Mitigation in Berlin with Eight-Type Spaces. Sustainable Cities and Society, 2022, 83, 103944.	10.4	13
160	Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees, Forests and People, 2022, 8, 100252.	1.9	13
161	Reurbanisation: A longâ€ŧerm process or a shortâ€ŧerm stage?. Population, Space and Place, 2019, 25, e2266.	2.3	12
162	Wounds, ghosts and gardens: Historical trauma and green reparations in Berlin and Detroit. Cities, 2019, 93, 153-163.	5.6	12

#	Article	IF	CITATIONS
163	Integrating Ecosystem Services, Green Infrastructure and Nature-Based Solutions—New Perspectives in Sustainable Urban Land Management. Human-environment Interactions, 2021, , 305-318.	1.2	12
164	Urban – Rural Linkages—Analysing, Modelling, and Understanding Drivers, Pressures, and Impacts of Land Use Changes along the Rural-to-Urban Gradient. Environment and Planning B: Planning and Design, 2012, 39, 194-197.	1.7	11
165	Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature. Sustainability, 2018, 10, 645.	3.2	11
166	Assessment of landscape changes under different urban dynamics based on a multiple-scenario modeling approach. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1361-1379.	2.0	11
167	Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City. Land, 2021, 10, 1367.	2.9	11
168	Guatemala City: A socio-ecological profile. Cities, 2018, 72, 379-390.	5.6	10
169	A glimpse into the future of exposure and vulnerabilities in cities? Modelling of residential location choice of urban population with random forest. Natural Hazards and Earth System Sciences, 2021, 21, 203-217.	3.6	10
170	Identifying Spatial Patterns and Ecosystem Service Delivery of Nature-Based Solutions. Environmental Management, 2022, 69, 735-751.	2.7	10
171	Individual Local Farmers' Perceptions of Environmental Change in Tanzania. Water (Switzerland), 2018, 10, 525.	2.7	9
172	How Are Urban Green Spaces and Residential Development Related? A Synopsis of Multi-Perspective Analyses for Leipzig, Germany. Land, 2021, 10, 630.	2.9	9
173	Urban Green Space in Transition: Historical parks and Soviet heritage in Arkhangelsk, Russia. Critical Housing Analysis, 2016, 3, 1.	0.7	9
174	Why Do(n't) People Move When They Get Older? Estimating the Willingness to Relocate in Diverse Ageing Cities. Urban Planning, 2019, 4, 53-69.	1.3	9
175	ABMland - a Tool for Agent-Based Model Development on Urban Land Use Change. Jasss, 2012, 15, .	1.8	9
176	Towards a <i>National Ecosystem Assessment</i> in Germany: A Plea for a Comprehensive Approach. Gaia, 2017, 26, 27-33.	0.7	8
177	Of bugs and men: How forest pests and their management strategies are perceived by visitors of an urban forest. Urban Forestry and Urban Greening, 2019, 41, 248-254.	5.3	8
178	Continuous integration in urban social-ecological systems science needs to allow for spacing co-existence. Ambio, 2021, 50, 1644-1649.	5.5	8
179	COVID-19 pandemic observations as a trigger to reflect on urban forestry in European cities under climate change: Introducing nature-society-based solutions. Urban Forestry and Urban Greening, 2021, 64, 127304.	5.3	8
180	The functional composition of the neophytic flora changes in response to environmental conditions along a rural-urban gradient. NeoBiota, 0, 54, 23-47.	1.0	8

#	Article	IF	CITATIONS
181	Saving rodents, losing primates—Why we need tailored bushmeat management strategies. People and Nature, 2020, 2, 889-902.	3.7	7
182	Biocultural diversity in an urban context: An indicator-based decision support tool to guide the planning and management of green infrastructure. Environmental and Sustainability Indicators, 2021, 11, 100131.	3.3	7
183	Wastelands, Greenways and Gentrification: Introducing a Comparative Framework with a Focus on Detroit, USA. Sustainability, 2020, 12, 6189.	3.2	6
184	Urban Cemeteries—Places of Multiple Diversity and Challenges. A Case Study from Åódź (Poland) and Leipzig (Germany). Land, 2022, 11, 677.	2.9	6
185	Cities Matter: Workspaces in Ecosystem-Service Assessments with Decision-Support Tools in the Context of Urban Systems. BioScience, 2018, 68, 164-166.	4.9	5
186	Do Urban Biodiversity and Urban Ecosystem Services Go Hand in Hand, or Do We Just Hope It Is That Easy?. Future City, 2018, , 301-312.	0.5	5
187	Back to nature! Or not? Urban dwellers and their forest in berlin. Urban Ecosystems, 2017, 20, 1069-1079.	2.4	4
188	Urban Telecouplings. , 2019, , 261-280.		4
189	Editorial for Special Issue "Nature-Based Solutions (NBS) in Cities and Their Interactions with Urban Land, Ecosystems, Built Environments and People: Debating Societal Implications― Land, 2021, 10, 937.	2.9	4
190	Shrinking Cities and Ecosystem Services: Opportunities, Planning, Challenges, and Risks. , 2019, , 271-277.		4
191	Urban open spaces and the urban matrix: elements, form and functions. , 2020, , 30-50.		4
192	Geospatial assessment of urban ecosystem disservices: An example of poisonous urban trees in Berlin, Germany. Urban Forestry and Urban Greening, 2022, 67, 127440.	5.3	4
193	Mapping Impervious Surface Using Phenology-Integrated and Fisher Transformed Linear Spectral Mixture Analysis. Remote Sensing, 2022, 14, 1673.	4.0	4
194	Lurking in the bushes: informality, illicit activity and transitional green space in Berlin and Detroit. Cultural Geographies, 2021, 28, 319-339.	1.9	3
195	On the Spatial Patterns of Urban Thermal Conditions Using Indoor and Outdoor Temperatures. Remote Sensing, 2021, 13, 640.	4.0	3
196	Leipzig-Halle: Ecosystem Services in a Stagnating Urban Region in Eastern Germany. , 2013, , 209-239.		3
197	Carbon sequestration in shrinking cities – potential or a drop in the ocean?. Alliance for Global Sustainability Bookseries, 2012, , 61-70.	0.2	3
198	How Is Urban Land Use Unique?. , 2014, , 299-312.		3

#	Article	IF	CITATIONS
199	Was leisten Stadtökosysteme für die Menschen in der Stadt?. , 2016, , 129-163.		3
200	Urban Green Fabric Analysis Promoting Sustainable Planning in Guatemala City. Land, 2021, 10, 18.	2.9	3
201	A Hybrid Approach Integrating 3D City Models, Remotely Sensed SAR Data and Interval-Valued Fuzzy Soft Set Based Decision Making for Post Disaster Mapping of Urban Areas. Lecture Notes in Geoinformation and Cartography, 2015, , 87-105.	1.0	2
202	Incorporating spatial autocorrelation and settlement type segregation to improve the performance of an urban growth model. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1184-1200.	2.0	2
203	Combining tacit knowledge elicitation with the SilverKnETs tool and random forests – The example of residential housing choices in Leipzig. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 400-416.	2.0	2
204	The Rural-to-Urban Gradient and Ecosystem Services. , 2019, , 141-146.		2
205	Creating accessible evidence bases: Opportunities through the integration of interactive tools into literature review synthesis. MethodsX, 2021, 8, 101558.	1.6	2
206	Urbanisierung und ihre Herausforderungen für die ökologische Stadtentwicklung. , 2016, , 1-30.		2
207	The Effects of Greening Cities on Climate Change Mitigation and Adaptation. , 2022, , 2055-2073.		2
208	Higher immigration and lower land take rates are driving a new densification wave in European cities. Npj Urban Sustainability, 2022, 2, .	8.0	2
209	Tools for Modelling and Assessing Peri-Urban Land Use Futures. , 2013, , 69-88.		1
210	The Effects of Greening Cities on Climate Change Mitigation and Adaptation. , 2021, , 1-19.		1
211	Change and Persistency. , 2017, , 257-271.		1
212	Worum geht es bei Stadtökologie und ihrer Anwendungen in der Stadtentwicklung?. , 2016, , 245-254.		1
213	Was sind Stadtökosysteme und warum sind sie besonders?. , 2016, , 61-84.		1
214	Wie verwundbar sind Stadtökosysteme und wie kann mit ihnen urbane Resilienz entwickelt werden?. , 2016, , 165-205.		1
215	How to derive spatial agents: A mixedâ€method approach to model an elderly population with scarce data. Population, Space and Place, 0, , .	2.3	1
216	Does vegetation mitigate the temperature in urban area or it follows the temperature of its surrounding?. , 2015, , .		0

#	Article	IF	CITATIONS
217	What Do Urban Ecosystems Do for the People in the City?. , 2021, , 165-208.		о
218	How Vulnerable Are Urban Ecosystems and How Can Urban Resilience Be Developed with Them?. , 2021, , 209-262.		0
219	What is Urban Ecology and What Are Its Applications in Urban Development?. , 2021, , 313-323.		0
220	Regional Assessment of Europe. , 2013, , 275-278.		0
221	"An interdisciplinary perspective on ecosystem services and human well-beingâ€+ results and potentials of German-Russian cooperation within the project. InterCarto InterGIS, 2020, 26, 80-93.	0.4	О