Hava Gil-Henn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126959/publications.pdf

Version: 2024-02-01

40 papers

1,942 citations

304701 22 h-index

39 g-index

41 all docs

41 docs citations

41 times ranked

2815 citing authors

#	Article	IF	CITATIONS
1	Text-Mining Approach to Identify Hub Genes of Cancer Metastasis and Potential Drug Repurposing to Target Them. Journal of Clinical Medicine, 2022, 11, 2130.	2.4	5
2	PD-L1 recruits phospholipase C and enhances tumorigenicity of lung tumors harboring mutant forms of EGFR. Cell Reports, 2021, 35, 109181.	6.4	27
3	Cell Adhesion Factors in the Orbitofrontal Cortex Control Cue-Induced Reinstatement of Cocaine Seeking and Amygdala-Dependent Goal Seeking. Journal of Neuroscience, 2021, 41, 5923-5936.	3.6	6
4	Are We Ready for Migrastatics?. Cells, 2021, 10, 1845.	4.1	10
5	Invasion and Metastasis as a Central Hallmark of Breast Cancer. Journal of Clinical Medicine, 2021, 10, 3498.	2.4	18
6	Pyk2 regulates cell-edge protrusion dynamics by interacting with Crk. Molecular Biology of the Cell, 2021, 32, mbc.E20-10-0640.	2.1	2
7	Invadopodia, a Kingdom of Non-Receptor Tyrosine Kinases. Cells, 2021, 10, 2037.	4.1	8
8	Inhibition of Vasculogenic Mimicry and Angiogenesis by an Anti-EGFR IgG1-Human Endostatin-P125A Fusion Protein Reduces Triple Negative Breast Cancer Metastases. Cells, 2021, 10, 2904.	4.1	8
9	Measuring Cell-Edge Protrusion Dynamics during Spreading using Live-Cell Microscopy. Journal of Visualized Experiments, 2021, , .	0.3	O
10	Pyk2 Stabilizes Striatal Medium Spiny Neuron Structure and Striatal-Dependent Action. Cells, 2021, 10, 3442.	4.1	1
11	A helical lock and key model of polyproline II conformation with SH3. Bioinformatics, 2020, 36, 154-159.	4.1	8
12	Invasion and metastasis: the elusive hallmark of cancer. Oncogene, 2020, 39, 2024-2026.	5.9	50
13	Arginase Inhibition Supports Survival and Differentiation of Neuronal Precursors in Adult Alzheimer's Disease Mice. International Journal of Molecular Sciences, 2020, 21, 1133.	4.1	12
14	Hepatitis C Virus Enhances the Invasiveness of Hepatocellular Carcinoma via EGFR-Mediated Invadopodia Formation and Activation. Cells, 2019, 8, 1395.	4.1	18
15	Commentary on Giralt et al.: PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease. Experimental Neurology, 2019, 311, 313-317.	4.1	5
16	Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling. Breast Cancer Research and Treatment, 2019, 174, 129-141.	2.5	39
17	L-Norvaline, a new therapeutic agent against Alzheimer's disease. Neural Regeneration Research, 2019, 14, 1562.	3.0	30
18	FAK family kinases: The Yin and Yang of cancer cell invasiveness. Molecular and Cellular Oncology, 2018, 5, e1449584.	0.7	11

#	Article	IF	Citations
19	Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. Journal of Cell Biology, 2018, 217, 375-395.	5.2	47
20	Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget, 2018, 9, 32556-32569.	1.8	26
21	Oral inflammation promotes oral squamous cell carcinoma invasion. Oncotarget, 2018, 9, 29047-29063.	1.8	79
22	L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer's Disease. Neurotherapeutics, 2018, 15, 1036-1054.	4.4	61
23	Targeting invadopodia for blocking breast cancer metastasis. Drug Resistance Updates, 2018, 39, 1-17.	14.4	63
24	Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget, 2018, 9, 22158-22183.	1.8	35
25	Generation of SMURF2 knockout human cells using the CRISPR/Cas9 system. Analytical Biochemistry, 2017, 531, 56-59.	2.4	7
26	Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Molecular Biology of the Cell, 2017, 28, 1347-1360.	2.1	38
27	An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2. Drug Design, Development and Therapy, 2017, Volume 11, 1535-1557.	4.3	6
28	A guide to simple, direct, and quantitative in vitro binding assays. Journal of Biological Methods, 2017, 4, e62.	0.6	21
29	Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumor Biology, 2016, 37, 12011-12021.	1.8	90
30	Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Science Signaling, 2015, 8, ra7.	3.6	53
31	Invadopodia: The leading force. European Journal of Cell Biology, 2012, 91, 896-901.	3.6	67
32	An EGFR–Src–Arg–Cortactin Pathway Mediates Functional Maturation of Invadopodia and Breast Cancer Cell Invasion. Cancer Research, 2011, 71, 1730-1741.	0.9	236
33	Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. Journal of Cell Biology, 2011, 195, 903-920.	5.2	181
34	Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. Journal of Cell Science, 2010, 123, 3662-3673.	2.0	145
35	'Tuning' of type I interferon–induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nature Immunology, 2008, 9, 186-193.	14.5	74
36	Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in <i>Pyk2â^'/â^'</i> mice. Journal of Cell Biology, 2007, 178, 1053-1064.	5.2	208

#	Article	lF	CITATION
37	Tyrosine Phosphatase-ε Activates Src and Supports the Transformed Phenotype of Neu-induced Mammary Tumor Cells. Journal of Biological Chemistry, 2003, 278, 15579-15586.	3.4	88
38	Protein tyrosine phosphatase epsilon inhibits signaling by mitogen-activated protein kinases. Molecular Cancer Research, 2003, 1, 541-50.	3.4	37
39	Regulation of Protein-tyrosine Phosphatases $\hat{l}\pm$ and $\hat{l}\mu$ by Calpain-mediated Proteolytic Cleavage. Journal of Biological Chemistry, 2001, 276, 31772-31779.	3.4	62
40	Generation of novel cytoplasmic forms of protein tyrosine phosphatase epsilon by proteolytic processing and translational control. Oncogene, 2000, 19, 4375-4384.	5.9	60