
Santiago Roura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms governing the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles: A scoping review of preclinical evidence. Biomedicine and Pharmacotherapy, 2022, 147, 112683.	2.5	13
2	Clinical translation of mesenchymal stromal cell extracellular vesicles: Considerations on scientific rationale and production requisites. Journal of Cellular and Molecular Medicine, 2022, 26, 937-939.	1.6	4
3	Commonly used methods for extracellular vesicles' enrichment: Implications in downstream analyses and use. European Journal of Cell Biology, 2022, 101, 151227.	1.6	27
4	Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model. Theranostics, 2022, 12, 4656-4670.	4.6	33
5	Are mesenchymal stem cells and derived extracellular vesicles valuable to halt the COVID-19 inflammatory cascade? Current evidence and future perspectives. Thorax, 2021, 76, 196-200.	2.7	19
6	Our Journey Through Advanced Therapies to Reduce Post-Infarct Scarring. Stem Cell Reviews and Reports, 2021, 17, 1928-1930.	1.7	1
7	Wharton's Jelly Mesenchymal Stromal Cells and Derived Extracellular Vesicles as Post-Myocardial Infarction Therapeutic Toolkit: An Experienced View. Pharmaceutics, 2021, 13, 1336.	2.0	1
8	Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioactive Materials, 2021, 6, 3314-3327.	8.6	40
9	Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. Cells, 2021, 10, 3268.	1.8	1
10	Porcine iPSC Generation: Testing Different Protocols to a Successful Application. Methods in Molecular Biology, 2021, , 1.	0.4	1
11	First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic engineered tissue graft. EBioMedicine, 2020, 54, 102729.	2.7	27
12	Potential of Extracellular Vesicle-Associated TSG-6 from Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury. International Journal of Molecular Sciences, 2020, 21, 6761.	1.8	12
13	Abstract 274: Activation of CaMKII Signaling Pathway Contributes to the Pathogenesis of Genetic Hypertrophic Cardiomyopathy. Circulation Research, 2020, 127, .	2.0	1
14	Adipose graft transposition procedure: towards a novel strategy for myocardial scar and fibrosis reduction. European Heart Journal, 2019, 40, 3571-3572.	1.0	2
15	Technical challenges for extracellular vesicle research towards clinical translation. European Heart Journal, 2019, 40, 3359-3360.	1.0	2
16	Determination of HLAâ€A, â€B, â€C, â€DRB1 and â€DQB1 allele and haplotype frequencies in heart failure patier ESC Heart Failure, 2019, 6, 388-395.	1.4	9
17	Extracellular vesicles: Squeezing every drop of regenerative potential of umbilical cord blood. Metabolism: Clinical and Experimental, 2019, 95, 102-104.	1.5	4
18	Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cellular and Molecular Life Sciences, 2019, 76, 2369-2382.	2.4	224

#	Article	IF	CITATIONS
19	Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application. Stem Cell Research and Therapy, 2019, 10, 356.	2.4	22
20	Toward Standardization of Mesenchymal Stromal Cellâ€Derived Extracellular Vesicles for Therapeutic Use: A Call for Action. Proteomics, 2019, 19, e1800397.	1.3	16
21	Myocardial healing using cardiac fat. Expert Review of Cardiovascular Therapy, 2018, 16, 305-311.	0.6	3
22	Unravelling the effects of mechanical physiological conditioning on cardiac adipose tissue-derived progenitor cells in vitro and in silico. Scientific Reports, 2018, 8, 499.	1.6	10
23	Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing. Scientific Reports, 2018, 8, 6708.	1.6	45
24	Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy. Laboratory Investigation, 2018, 98, 1291-1299.	1.7	26
25	Circulating monocyte subsets and heart failure prognosis. PLoS ONE, 2018, 13, e0204074.	1.1	8
26	Predictive biomarkers for death and rehospitalization in comorbid frail elderly heart failure patients. BMC Geriatrics, 2018, 18, 109.	1.1	33
27	Telomere attrition in heart failure: a flow-FISH longitudinal analysis of circulating monocytes. Journal of Translational Medicine, 2018, 16, 35.	1.8	6
28	Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2304-2313.	1.3	36
29	Intracoronary Administration of Allogeneic Adipose Tissue–Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	43
30	Extracellular vesicles do not contribute to higher circulating levels of soluble <scp>LRP</scp> 1 in idiopathic dilated cardiomyopathy. Journal of Cellular and Molecular Medicine, 2017, 21, 3000-3009.	1.6	9
31	Variable endothelial cell function restoration after initiation of two antiretroviral regimens in HIV-infected individuals. Journal of Antimicrobial Chemotherapy, 2017, 72, 2049-2054.	1.3	7
32	Biotherapies and biomarkers for cardiovascular diseases. European Heart Journal, 2017, 38, 1784-1786.	1.0	3
33	Preclinical Safety Evaluation of Allogeneic Induced Pluripotent Stem Cell-Based Therapy in a Swine Model of Myocardial Infarction. Tissue Engineering - Part C: Methods, 2017, 23, 736-744.	1.1	10
34	Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach. Npj Systems Biology and Applications, 2017, 3, 12.	1.4	96
35	Noninvasive Assessment of an Engineered Bioactive Graft in Myocardial Infarction: Impact on Cardiac Function and Scar Healing. Stem Cells Translational Medicine, 2017, 6, 647-655.	1.6	28
36	Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction. Stem Cells Translational Medicine, 2017, 6, 970-981.	1.6	26

#	Article	IF	CITATIONS
37	Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics, 2017, 7, 270-284.	4.6	155
38	Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and in a Swine Model of Myocardial Infarction In Vivo. Frontiers in Immunology, 2017, 8, 1577.	2.2	36
39	Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario?. Stem Cell Research and Therapy, 2017, 8, 238.	2.4	49
40	A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function. JACC Basic To Translational Science, 2016, 1, 360-372.	1.9	20
41	Cardiac Tissue Engineering. Journal of the American College of Cardiology, 2016, 68, 724-726.	1.2	7
42	Brilliant violet fluorochromes in simultaneous multicolor flow cytometry–fluorescence in situ hybridization measurement of monocyte subsets and telomere length in heart failure. Laboratory Investigation, 2016, 96, 1223-1230.	1.7	3
43	Quality and exploitation of umbilical cord blood for cell therapy: Are we beyond our capabilities?. Developmental Dynamics, 2016, 245, 710-717.	0.8	6
44	First-in-man Safety and Efficacy of the Adipose Graft Transposition Procedure (AGTP) in Patients With a Myocardial Scar. EBioMedicine, 2016, 7, 248-254.	2.7	12
45	Circulating Endothelial Progenitor Cells: Potential Biomarkers for Idiopathic Dilated Cardiomyopathy. Journal of Cardiovascular Translational Research, 2016, 9, 80-84.	1.1	11
46	Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study. BioMed Research International, 2015, 2015, 1-9.	0.9	21
47	Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research. BioMed Research International, 2015, 2015, 1-6.	0.9	13
48	The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Research and Therapy, 2015, 6, 123.	2.4	85
49	Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Research and Therapy, 2015, 6, 108.	2.4	41
50	Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2015, 85, 25-36.	0.9	18
51	Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2015, 4, 956-966.	1.6	39
52	Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E76-E83.	1.3	35
53	In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. American Journal of Translational Research (discontinued), 2015, 7, 558-73.	0.0	37
54	Umbilical cord blood-derived mesenchymal stem cells: New therapeutic weapons for idiopathic dilated cardionyopathy?. International Journal of Cardiology, 2014, 177, 809-818.	0.8	16

#	Article	IF	CITATIONS
55	Physiological conditioning by electric field stimulation promotes cardiomyogenic gene expression in human cardiomyocyte progenitor cells. Stem Cell Research and Therapy, 2014, 5, 93.	2.4	23
56	Allogeneic adipose stem cell therapy in acute myocardial infarction. European Journal of Clinical Investigation, 2014, 44, 83-92.	1.7	47
57	Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 2014, 12, 137.	1.8	22
58	Inverse relationship between raft LRP1 localization and non-raft ERK1,2/MMP9 activation in idiopathic dilated cardiomyopathy: Potential impact in ventricular remodeling. International Journal of Cardiology, 2014, 176, 805-814.	0.8	21
59	Online monitoring of myocardial bioprosthesis for cardiac repair. International Journal of Cardiology, 2014, 174, 654-661.	0.8	34
60	Cardiac Tissue Engineering and the Bioartificial Heart. Revista Espanola De Cardiologia (English Ed), 2013, 66, 391-399.	0.4	39
61	The Challenges for Cardiac Vascular Precursor Cell Therapy: Lessons from a Very Elusive Precursor. Journal of Vascular Research, 2013, 50, 304-323.	0.6	15
62	IngenierÃa tisular cardiaca y corazón bioartificial. Revista Espanola De Cardiologia, 2013, 66, 391-399.	0.6	45
63	Bioluminescence imaging: a shining future for cardiac regeneration. Journal of Cellular and Molecular Medicine, 2013, 17, 693-703.	1.6	31
64	New insights into lipid raft function regulating myocardial vascularization competency in human idiopathic dilated cardiomyopathy. Atherosclerosis, 2013, 230, 354-364.	0.4	7
65	Post-infarction scar coverage using a pericardial-derived vascular adipose flap. Pre-clinical results. International Journal of Cardiology, 2013, 166, 469-474.	0.8	23
66	Hypoxia Induces Metalloproteinase-9 Activation and Human Vascular Smooth Muscle Cell Migration Through Low-Density Lipoprotein Receptor–Related Protein 1–Mediated Pyk2 Phosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2877-2887.	1.1	34
67	Myocardial bioprosthesis: Mimicking nature. Drugs of the Future, 2013, 38, 475.	0.0	3
68	In Vitro Characterization of the Molecular Machinery Regulating Umbilical Cord Blood Mesenchymal Stem Cell Angiogenesis: A Step Towards Multipotent Stem Cell Therapy for Vascular Regeneration. Journal of Stem Cell Research & Therapy, 2013, 3, .	0.3	3
69	Fetal-maternal interface: A chronicle of allogeneic coexistence. Chimerism, 2012, 3, 18-23.	0.7	5
70	Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients. Journal of Translational Medicine, 2012, 10, 160.	1.8	34
71	Umbilical cord blood for cardiovascular cell therapy: from promise to fact. Annals of the New York Academy of Sciences, 2012, 1254, 66-70.	1.8	22
72	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Promote Vascular Growth In Vivo. PLoS ONE, 2012, 7, e49447.	1.1	70

#	Article	IF	CITATIONS
73	Transposition of a pericardial-derived vascular adipose flap for myocardial salvage after infarct. Cardiovascular Research, 2011, 91, 659-667.	1.8	34
74	Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Research in Cardiology, 2010, 105, 419-430.	2.5	41
75	Effects of Adipose Tissue-Derived Stem Cell Therapy After Myocardial Infarction: Impact of the Route of Administration. Journal of Cardiac Failure, 2010, 16, 357-366.	0.7	77
76	Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 2010, 49, 771-780.	0.9	104
77	Vascular dysfunction in idiopathic dilated cardiomyopathy. Nature Reviews Cardiology, 2009, 6, 590-598.	6.1	79
78	Cell Viability in a Cryopreserved Human Cancellous Allograft. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2008, 52, 27-31.	0.1	0
79	Hemosiderin Deposits Confounds Tracking of Iron-Oxide-Labeled Stem Cells: An Experimental Study. Transplantation Proceedings, 2008, 40, 3619-3622.	0.3	14
80	Idiopathic dilated cardiomyopathy exhibits defective vascularization and vessel formation. European Journal of Heart Failure, 2007, 9, 995-1002.	2.9	51
81	Umbilical Cord Blood-Derived Stem Cells Spontaneously Express Cardiomyogenic Traits. Transplantation Proceedings, 2007, 39, 2434-2437.	0.3	41
82	Chimerism and microchimerism of the human heart: evidence for cardiac regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S40-S45.	3.3	26
83	FGF-4 increases <i>in vitro</i> expansion rate of human adult bone marrow-derived mesenchymal stem cells. Growth Factors, 2007, 25, 71-76.	0.5	47
84	The proarrhythmic antihistaminic drug terfenadine increases spontaneous calcium release in human atrial myocytes. European Journal of Pharmacology, 2006, 553, 215-221.	1.7	29
85	Effect of aging on the pluripotential capacity of human CD105+mesenchymal stem cells. European Journal of Heart Failure, 2006, 8, 555-563.	2.9	99
86	Identification of Male Cardiomyocytes of Extracardiac Origin in the Hearts of Women with Male Progeny: Male Fetal Cell Microchimerism of the Heart. Journal of Heart and Lung Transplantation, 2005, 24, 2179-2183.	0.3	78
87	Identification of Cardiomyogenic Lineage Markers in Untreated Human Bone Marrow–Derived Mesenchymal Stem Cells. Transplantation Proceedings, 2005, 37, 4077-4079.	0.3	32
88	Atrial Fibrillation Is Associated With Increased Spontaneous Calcium Release From the Sarcoplasmic Reticulum in Human Atrial Myocytes. Circulation, 2004, 110, 1358-1363.	1.6	301
89	Inducible expression of p120Cas1B isoform corroborates the role for p120-catenin as a positive regulator of E-cadherin function in intestinal cancer cells. Biochemical and Biophysical Research Communications, 2004, 320, 435-441.	1.0	3
90	APC 3×15 β-catenin-binding domain potentiates β-catenin association to TBP and upregulates TCF-4 transcriptional activity. Biochemical and Biophysical Research Communications, 2003, 309, 830-835.	1.0	5

#	Article	IF	CITATIONS
91	Regulation of E-cadherin/Catenin Association by Tyrosine Phosphorylation. Journal of Biological Chemistry, 1999, 274, 36734-36740.	1.6	533
92	Independent regulation of adherens and tight junctions by tyrosine phosphorylation in Caco-2 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1452, 121-132.	1.9	31
93	Idiopathic Dilated Cardiomyopathy: Molecular Basis and Distilling Complexity to Advance. , 0, , .		0
94	Materials for cardiac tissue engineering. , 0, , 533-550.		0