Robert Karpiński

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients. Scientific Reports, 2019, 9, 9594.	3.3	28
2	STRUCTURAL ANALYSIS OF ARTICULAR CARTILAGE OF THE HIP JOINT USING FINITE ELEMENT METHOD. Advances in Science and Technology Research Journal, 2016, 10, 240-246.	0.8	27
3	Comparison of Diagnostic Accuracy of Physical Examination and MRI in the Most Common Knee Injuries. Applied Sciences (Switzerland), 2019, 9, 4102.	2.5	24
4	Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials, 2020, 13, 4657.	2.9	24
5	Knee MRI Underestimates the Grade of Cartilage Lesions. Applied Sciences (Switzerland), 2021, 11, 1552.	2.5	24
6	Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials, 2021, 14, 2371.	2.9	23
7	Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials, 2020, 13, 1332.	2.9	22
8	Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors, 2022, 22, 2176.	3.8	22
9	The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials, 2021, 14, 1841.	2.9	21
10	Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patellofemoral Joint. Sensors, 2022, 22, 3765.	3.8	20
11	THE STRUCTURAL AND MECHANICAL PROPERTIES OF THE BONE. Journal of Technology and Exploitation in Mechanical Engineering, 2019, 3, 43-50.	0.5	19
12	Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials, 2020, 13, 5419.	2.9	18
13	Short-Term Effects of Arthroscopic Microfracturation of Knee Chondral Defects in Osteoarthritis. Applied Sciences (Switzerland), 2020, 10, 8312.	2.5	18
14	Robot-Assisted Autism Therapy (RAAT). Criteria and Types of Experiments Using Anthropomorphic and Zoomorphic Robots. Review of the Research. Sensors, 2021, 21, 3720.	3.8	18
15	Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials, 2021, 14, 3880.	2.9	18
16	Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio. Materials, 2019, 12, 3073.	2.9	17
17	Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement. Materials, 2019, 12, 3963.	2.9	16
18	Stress distribution in the knee joint in relation to tibiofemoral angle using the finite element method. MATEC Web of Conferences, 2019, 252, 07007.	0.2	15

Robert Karpiński

#	Article	IF	CITATIONS
19	Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials, 2022, 15, 721.	2.9	14
20	Influence of patient position and implant material on the stress distribution in an artificial intervertebral disc of the lumbar vertebrae. ITM Web of Conferences, 2017, 15, 07006.	0.5	12
21	Analysis of the properties of bone cement with respect to its manufacturing and typical service lifetime conditions. MATEC Web of Conferences, 2018, 244, 01004.	0.2	12
22	The Impact of Contaminating Poly (Methyl Methacrylate) (PMMA) Bone Cements on Their Compressive Strength. Materials, 2021, 14, 2555.	2.9	11
23	Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements. Materials, 2022, 15, 2197.	2.9	11
24	The influence of the nucleus pulposus on the stress distribution in the natural and prosthetic intervertebral disc. MATEC Web of Conferences, 2019, 252, 07006.	0.2	10
25	Experimental Verification of Standard Recommendations for Estimating the Load-Carrying Capacity of Undercut Anchors in Rock Material. Advances in Science and Technology Research Journal, 2021, 15, 230-244.	0.8	10
26	BIOMECHANICS OF THE HUMAN HAND. Journal of Technology and Exploitation in Mechanical Engineering, 2019, 3, 28-33.	0.5	9
27	Determining the Effect of Rock Strength Parameters on the Breakout Area Utilizing the New Design of the Undercut/Breakout Anchor. Materials, 2022, 15, 851.	2.9	8
28	The design and structural analysis of the endoprosthesis of the shoulder joint. ITM Web of Conferences, 2017, 15, 07015.	0.5	7
29	Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity. Materials, 2021, 14, 110.	2.9	6
30	Road traffic accident injuries $\hat{a} \in \raimet{"}$ Causes and biomaterial related treatment. , 2018, , .		5
31	DETERMINATION OF A GROUND REACTION FORCE AFFECTING HUMAN BODY DURING JUMP. Journal of Technology and Exploitation in Mechanical Engineering, 2019, 2, 32-35.	0.5	4
32	Effect of Ringer's Solution on Tensile Strength of Non-Absorbable, Medium- and Long-Term Absorbable Sutures. Advances in Science and Technology Research Journal, 2017, 11, 11-20.	0.8	2
33	THE STRUCTURAL ANALYSIS OF SOCKET INLAYS OF THE HIP ENDOPROSTHESIS. Journal of Technology and Exploitation in Mechanical Engineering, 2019, 2, 36-39.	0.5	1
34	BIOMECHANICS OF THE HUMAN SPINE. Journal of Technology and Exploitation in Mechanical Engineering, 2019, 3, 8-12.	0.5	1