List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126552/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Reference value standards and primary standards for pH measurements in organic solvents and water + organic solvent mixtures of moderate to high permittivities. Pure and Applied Chemistry, 1987, 59, 1549-1560.	1.9	165
2	The Role of Substituents on Functionalized 1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices. Inorganic Chemistry, 2007, 46, 8533-8547.	4.0	164
3	Silver as a powerful electrocatalyst for organic halide reduction: the critical role of molecular structure. Electrochimica Acta, 2001, 46, 3245-3258.	5.2	150
4	Nearâ€IR Emitting Iridium(III) Complexes with Heteroaromatic βâ€Diketonate Ancillary Ligands for Efficient Solutionâ€Processed OLEDs: Structure–Property Correlations. Angewandte Chemie - International Edition, 2016, 55, 2714-2718.	13.8	126
5	Electrochemical reduction of benzyl halides at a silver electrode. Electrochimica Acta, 2006, 51, 4956-4964.	5.2	117
6	Melamine Acoustic Chemosensor Based on Molecularly Imprinted Polymer Film. Analytical Chemistry, 2009, 81, 10061-10070.	6.5	110
7	Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure and Applied Chemistry, 1987, 59, 1693-1702.	1.9	106
8	Relevance of electron transfer mechanism in electrocatalysis: the reduction of organic halides at silver electrodes. Chemical Communications, 2006, , 344-346.	4.1	99
9	Electrocatalytic potentialities of silver as a cathode for organic halide reductions. Electrochemistry Communications, 2000, 2, 491-496.	4.7	96
10	Reference value standards and primary standards for pH measurements in D2O and aqueousorganic solvent mixtures: New accessions and assessments (Technical Report). Pure and Applied Chemistry, 1997, 69, 1007-1014.	1.9	92
11	Microcrystalline cellulose powders: structure, surface features and water sorption capability. Cellulose, 1999, 6, 57-69.	4.9	90
12	Highly Emitting Neutral Dinuclear Rhenium Complexes as Phosphorescent Dopants for Electroluminescent Devices. Advanced Functional Materials, 2009, 19, 2607-2614.	14.9	88
13	Potentialâ€Driven Chirality Manifestations and Impressive Enantioselectivity by Inherently Chiral Electroactive Organic Films. Angewandte Chemie - International Edition, 2014, 53, 2623-2627.	13.8	84
14	Electrocatalysis and electron transfer mechanisms in the reduction of organic halides at Ag. Journal of Applied Electrochemistry, 2009, 39, 2217-2225.	2.9	80
15	New Insights into Electrocatalysis and Dissociative Electron Transfer Mechanisms: The Case of Aromatic Bromides. Journal of Physical Chemistry C, 2009, 113, 14983-14992.	3.1	80
16	Luminescent dinuclear rhenium(I) complexes containing bridging 1,2-diazine ligands: Photophysical properties and application. Coordination Chemistry Reviews, 2012, 256, 1621-1643.	18.8	79
17	The solvent effect in the electrocatalytic reduction of organic bromides on silver. Journal of Electroanalytical Chemistry, 2006, 593, 47-56.	3.8	77
18	Inherently chiral electrodes: the tool for chiral voltammetry. Chemical Science, 2015, 6, 1706-1711.	7.4	76

#	Article	IF	CITATIONS
19	Building up an electrocatalytic activity scale of cathode materials for organic halide reductions. Electrochimica Acta, 2005, 50, 2331-2341.	5.2	69
20	Synthesis, Electronic Characterisation and Significant Second-Order Non-Linear Optical Responses ofmeso-Tetraphenylporphyrins and Their ZnII Complexes Carrying a Push or Pull Group in the β Pyrrolic Position. European Journal of Inorganic Chemistry, 2005, 2005, 3857-3874.	2.0	68
21	A New Class of Luminescent Tricarbonyl Rhenium(I) Complexes Containing Bridging 1,2-Diazine Ligands: Electrochemical, Photophysical, and Computational Characterization. Inorganic Chemistry, 2008, 47, 4243-4255.	4.0	66
22	Enantioselective selectors for chiral electrochemistry and electroanalysis: Stereogenic elements and enantioselection performance. Current Opinion in Electrochemistry, 2018, 8, 60-72.	4.8	61
23	Tetraaryl Zn ^{II} Porphyrinates Substituted at βâ€Pyrrolic Positions as Sensitizers in Dye‣ensitized Solar Cells: A Comparison with <i>meso</i> â€Disubstituted Push–Pull Zn ^{II} Porphyrinates. Chemistry - A European Journal, 2013, 19, 10723-10740.	3.3	60
24	Inherently Chiral Macrocyclic Oligothiophenes: Easily Accessible Electrosensitive Cavities with Outstanding Enantioselection Performances. Chemistry - A European Journal, 2014, 20, 15298-15302.	3.3	57
25	The Electrocatalytic Performance of Silver in the Reductive Dehalogenation of Bromophenols. Journal of the Electrochemical Society, 2001, 148, D102.	2.9	53
26	Electronic Characterisation and Significant Second-Order NLO Response of 10,20-Diphenylporphyrins and Their ZnII Complexes Substituted in themeso Position with π-Delocalised Linkers Carrying Push or Pull Groups. European Journal of Inorganic Chemistry, 2006, 2006, 1743-1757.	2.0	48
27	Large, Concentration-Dependent Enhancement of the Quadratic Hyperpolarizability of [Zn(CH3CO2)2(L)2] in CHCl3 on Substitution of Acetate by Triflate. Angewandte Chemie - International Edition, 2003, 42, 456-459.	13.8	47
28	Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 10723-10725.	4.0	47
29	The role of surface morphology on the electrocatalytic reduction of organic halides on mono- and polycrystalline silver. Electrochimica Acta, 2003, 48, 3789-3796.	5.2	45
30	Spiderâ€Like Oligothiophenes. Chemistry - A European Journal, 2008, 14, 459-471.	3.3	45
31	Is glassy carbon a really inert electrode material for the reduction of carbon–halogen bonds?. Electrochemistry Communications, 2009, 11, 1932-1935.	4.7	44
32	Adsorption competition effects in the electrocatalytic reduction of organic halides on silver. Journal of Electroanalytical Chemistry, 2002, 532, 285-293.	3.8	42
33	Electrochemical activity of thiahelicenes: Structure effects and electrooligomerization ability. Electrochimica Acta, 2009, 54, 5083-5097.	5.2	39
34	A family of chiral ionic liquids from the natural pool: Relationships between structure and functional properties and electrochemical enantiodiscrimination tests. Electrochimica Acta, 2019, 298, 194-209.	5.2	38
35	Specific adsorption of bromide and iodide anions from nonaqueous solutions on controlled-surface polycrystalline silver electrodes. Journal of Electroanalytical Chemistry, 2006, 593, 185-193.	3.8	37
36	Acidâ€base properties of poly(amidoamine)s. Journal of Polymer Science Part A, 2009, 47, 6977-6991.	2.3	37

#	Article	IF	CITATIONS
37	Metalâ€Free Benzodithiopheneâ€Containing Organic Dyes for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 84-94.	2.4	36
38	Thiahelicene-based inherently chiral films for enantioselective electroanalysis. Chemical Science, 2019, 10, 1539-1548.	7.4	36
39	A new ferrocene conjugate of a tyrosine PNA monomer: synthesis and electrochemical properties. Journal of Organometallic Chemistry, 2004, 689, 4791-4802.	1.8	35
40	Electroactive chiral oligo- and polymer layers for electrochemical enantiorecognition. Current Opinion in Electrochemistry, 2018, 7, 188-199.	4.8	35
41	The electrochemical activity of heteroatom-stabilized Fischer-type carbene complexes. Journal of Organometallic Chemistry, 2005, 690, 5777-5787.	1.8	34
42	Glycosyl Halides as Building Blocks for the Electrosynthesis of Glycosides. Journal of the Electrochemical Society, 1998, 145, 1108-1112.	2.9	33
43	Surface screening effects by specifically adsorbed halide anions in the electrocatalytic reduction of a model organic halide at mono- and polycrystalline silver in acetonitrile. Journal of Electroanalytical Chemistry, 2003, 552, 213-221.	3.8	33
44	The Role of Ion Pairs in the Secondâ€Order NLO Response of 4â€Xâ€Iâ€Methylpiridinium Salts. ChemPhysChem, 2010, 11, 495-507.	2.1	33
45	"Inherently Chiralâ€Ionicâ€Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes. Angewandte Chemie - International Edition, 2017, 56, 2079-2082.	13.8	33
46	Thermodynamics of the cell: {NaxHg1â^'x NaCl(m) AgCl Ag} in (methanol+water) solvent mixtures. Journal of Chemical Thermodynamics, 1996, 28, 923-933.	2.0	32
47	A New Triferrocenyl-tris(hydroxymethyl)aminomethane Derivative as a Highly Sensitive Electrochemical Marker of Biomolecules: Application to the Labelling of PNA Monomers and Their Electrochemical Characterization. Chemistry - A European Journal, 2006, 12, 4091-4100.	3.3	32
48	Structural and Optical Properties of Inherently Chiral Polythiophenes: A Combined CD-Electrochemistry, Circularly Polarized Luminescence, and TD-DFT Investigation. Journal of Physical Chemistry C, 2014, 118, 16019-16027.	3.1	32
49	Highly improved performance of ZnII tetraarylporphyrinates in DSSCs by the presence of octyloxy chains in the aryl rings. Journal of Materials Chemistry A, 2015, 3, 2954-2959.	10.3	31
50	Novel Amphoteric Cystine-Based Poly(amidoamine)s Responsive to Redox Stimuli. Macromolecules, 2007, 40, 4785-4793.	4.8	30
51	Steric vs electronic effects and solvent coordination in the electrochemistry of phenanthroline-based copper complexes. Electrochimica Acta, 2014, 141, 324-330.	5.2	30
52	Natural-based chiral task-specific deep eutectic solvents: A novel, effective tool for enantiodiscrimination in electroanalysis. Electrochimica Acta, 2021, 380, 138189.	5.2	30
53	Electrochemical activity of new ferrocene-labelled PNA monomers to be applied for DNA detection: Effects of the molecular structure and of the solvent. Journal of Electroanalytical Chemistry, 2005, 585, 197-205.	3.8	29
54	An effective multipurpose building block for 3D electropolymerisation: 2,2′-Bis(2,2′-bithiophene-5-yl)-3,3′-bithianaphthene. Electrochimica Acta, 2010, 55, 8352-8364.	5.2	29

#	Article	IF	CITATIONS
55	Tetrathia[7]helicene-Based Complexes of Ferrocene and (η ⁵ -Cyclohexadienyl)tricarbonylmanganese: Synthesis and Electrochemical Studies. Organometallics, 2012, 31, 92-104.	2.3	29
56	Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrin-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 9577-9585.	2.8	29
57	Electrochemical reduction of halogenosugars on silver: a new approach to C-disaccharide-like mimics. Chemical Communications, 1998, , 1575-1576.	4.1	28
58	Ternary thiophene–X–thiophene semiconductor building blocks (X=fluorene, carbazole,) Tj ETQq0 0 0 rgBT / core. Electrochimica Acta, 2011, 56, 6638-6653.	Overlock 5.2	10 Tf 50 627 28
59	pH measurements in non-aqueous and mixed solvents: Predicting pH(PS) of potassium hydrogen phthalate for alcoholwater mixtures (Technical Report). Pure and Applied Chemistry, 1998, 70, 1419-1422.	1.9	27
60	Physicochemical Investigation of the Panchromatic Effect on β-Substituted Zn ^{II} Porphyrinates for DSSCs: The Role of the π Bridge between a Dithienylethylene Unit and the Porphyrinic Ring. Journal of Physical Chemistry C, 2014, 118, 7307-7320.	3.1	27
61	The solvent effect on the electrocatalytic cleavage of carbon-halogen bonds on Ag and Au. Electrochimica Acta, 2015, 158, 427-436.	5.2	27
62	"Inherently chiral―thiophene-based electrodes at work: a screening of enantioselection ability toward a series of pharmaceutically relevant phenolic or catecholic amino acids, amino esters, and amine. Analytical and Bioanalytical Chemistry, 2016, 408, 7243-7254.	3.7	27
63	Cathode and medium effects on the electroreductive glucosidation of phenols. Physical Chemistry Chemical Physics, 1999, 1, 2989-2995.	2.8	26
64	Unexpected Formation of a Weak Metalâ^'Metal Bond:Â Synthesis, Electronic Properties, and Second-Order NLO Responses of Pushâ^'Pull Lateâ^'Early Heteronuclear Bimetallic Complexes with W(CO)3(1,10-phenanthroline) Acting as a Donor Ligand. Organometallics, 2003, 22, 4001-4011.	2.3	26
65	Second-Order Nonlinear Optical (NLO) Properties of a Multichromophoric System Based on an Ensemble of Four Organic NLO Chromophores Nanoorganized on a Cyclotetrasiloxane Architecture. Journal of Physical Chemistry C, 2009, 113, 2745-2760.	3.1	26
66	Steric and Electronic Effects on the Configurational Stability of Residual Chiral Phosphorusâ€Centered Threeâ€Bladed Propellers: Trisâ€aryl Phosphanes. Chemistry - A European Journal, 2013, 19, 182-194.	3.3	26
67	Easy Entry into Reduced Arâ€BIANH ₂ Compounds: A New Class of Quinone/Hydroquinoneâ€Type Redoxâ€Active Couples with an Easily Tunable Potential. Chemistry - A European Journal, 2014, 20, 14451-14464.	3.3	25
68	Benzodithiophene based organic dyes for DSSC: Effect of alkyl chain substitution on dye efficiency. Dyes and Pigments, 2015, 121, 351-362.	3.7	25
69	Inherently Chiral Spiderâ€Like Oligothiophenes. Chemistry - A European Journal, 2016, 22, 10839-10847.	3.3	25
70	Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 405, 98-104.	2.4	24
71	New dinuclear hydrido-carbonyl rhenium complexes designed as photosensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 2910-2919.	2.8	24
72	Novel polyamidoamine-based hydrogel with an innovative molecular architecture as a Co2+-, Ni2+-, and Cu2+-sorbing material: Cyclovoltammetry and extended X-ray absorption fine structure studies. Journal of Polymer Science Part A, 2006, 44, 2316-2327.	2.3	23

#	Article	IF	CITATIONS
73	Determination of selenium in Italian rices by differential pulse cathodic stripping voltammetry. Food Chemistry, 2007, 105, 1091-1098.	8.2	23
74	Modulating the electronic properties of asymmetric push–pull and symmetric Zn(II)-diarylporphyrinates with para substituted phenylethynyl moieties in 5,15 meso positions: A combined electrochemical and spectroscopic investigation. Electrochimica Acta, 2012, 85, 509-523.	5.2	23
75	Electrochemical, Computational, and Photophysical Characterization of New Luminescent Dirhenium–Pyridazine Complexes Containing Bridging OR or SR Anions. Inorganic Chemistry, 2012, 51, 2966-2975.	4.0	23
76	Synthesis, Photophysics, and Electrochemistry of Tetra(2â€ŧhienyl)ethylene (TTE) Derivatives. European Journal of Organic Chemistry, 2013, 2013, 7489-7499.	2.4	23
77	Nearâ€IR Emitting Iridium(III) Complexes with Heteroaromatic βâ€Diketonate Ancillary Ligands for Efficient Solutionâ€Processed OLEDs: Structure–Property Correlations. Angewandte Chemie, 2016, 128, 2764-2768.	2.0	23
78	Steric and Electronic Tuning of Chiral Bis(oxazoline) Ligands with 3,3â€~-Bithiophene Backbone. Journal of Organic Chemistry, 2005, 70, 7488-7495.	3.2	22
79	Highly enantioselective "inherently chiral―electroactive materials based on a 2,2′-biindole atropisomeric scaffold. Chemical Science, 2019, 10, 2708-2717.	7.4	22
80	Title is missing!. Journal of Solution Chemistry, 1997, 26, 1169-1186.	1.2	21
81	Exploring the first steps of an electrochemically-triggered controlled polymerization sequence: Activation of alkyl- and benzyl halide initiators by an electrogenerated FellSalen complex. Journal of Electroanalytical Chemistry, 2009, 633, 99-105.	3.8	21
82	Ion and solvent transfers at homoionic junctions between concentrated electrolyte solutions. Journal of Applied Electrochemistry, 1990, 20, 645-650.	2.9	20
83	Reactivity of Halo Sugars on Silver Cathodes. Collection of Czechoslovak Chemical Communications, 2000, 65, 881-898.	1.0	20
84	Steric and Electronic Effects on the Configurational Stability of Residual Chiral Phosphorusâ€Centered Threeâ€Bladed Propellers: Trisâ€aryl Phosphane Oxides. Chemistry - A European Journal, 2013, 19, 165-181.	3.3	19
85	An "inherently chiral―1,1′-bibenzimidazolium additive for enantioselective voltammetry in ionic liquid media. Electrochemistry Communications, 2018, 89, 57-61.	4.7	19
86	Verification of the approximate equitransference of the aqueous potassium chloride salt bridge at high concentrations. Analytical Chemistry, 1990, 62, 1019-1021.	6.5	18
87	Thermodynamics of the cell: {MexHg1â~'x MeCl(m) AgCl Ag} (Me = Na,K,Cs) in (ethanol + water) solvent mixtures. Journal of Chemical Thermodynamics, 1995, 27, 245-251.	2.0	18
88	An Investigation on the Role of the Nature of Sulfonate Ancillary Ligands on the Strength and Concentration Dependence of the Second-Order NLO Responses in CHCl3 of Zn(II) Complexes with 4,4â€ ⁻ -trans-NC5H4CHCHC6H4NMe2 and 4,4â€ ⁻ -trans,trans-NC5H4(CHCH)2C6H4NMe2. Inorganic Chemistry, 2005. 44. 2437-2442.	4.0	18
89	Chirality in the Absence of Rigid Stereogenic Elements: The Absolute Configuration of Residual Enantiomers of <i>C</i> ₃ ‣ymmetric Propellers. Chemistry - A European Journal, 2009, 15, 86-93.	3.3	18
90	Towards Molecular Design Rationalization in Branched Multiâ€Thiophene Semiconductors: The 2â€Thienylâ€Persubstituted αâ€Oligothiophenes. Chemistry - A European Journal, 2010, 16, 9086-9098.	3.3	18

#	Article	IF	CITATIONS
91	Tetrathia[7]helicene Phosphorus Derivatives: Experimental and Theoretical Investigations of Electronic Properties, and Preliminary Applications as Organocatalysts. Asian Journal of Organic Chemistry, 2016, 5, 537-549.	2.7	18
92	Tricarbonyl Rhenium(I) Complexes Containing a Bridging 2,5-Diphenyl-1,3,4-oxadiazole Ligand: Structural, Spectroscopic, Electrochemical, and Computational Characterization. Inorganic Chemistry, 2008, 47, 11154-11165.	4.0	17
93	Upper limit to the ultimate achievable emission wavelength in near-IR emitting cyclometalated iridium complexes. Photochemical and Photobiological Sciences, 2017, 16, 1220-1223.	2.9	17
94	Medium effects, comparability and predictability of pH-standards in aqueous+organic solvent mixtures: behavior of the (ethylene carbonate+water) and (propylene carbonate+water) systems. Journal of Electroanalytical Chemistry, 2001, 503, 153-158.	3.8	16
95	Electrodeposited Polycrystalline Silver Electrodes: Surface Control for Electrocatalysis Studies. Russian Journal of Electrochemistry, 2003, 39, 170-176.	0.9	16
96	Relationship between supporting electrolyte bulkiness and dissociative electron transfer at catalytic and non-catalytic electrodes. Electrochimica Acta, 2013, 89, 52-62.	5.2	16
97	Electrochemical reduction of α-D-glycopyranosyl bromides on a mercury cathode. Electrochimica Acta, 1991, 36, 1095-1098.	5.2	15
98	Title is missing!. Journal of Applied Electrochemistry, 1998, 28, 1305-1311.	2.9	15
99	Transference Numbers of Alkali Chlorides and Characterization of Salt Bridges for Use in Methanol + Water Mixed Solvents. Journal of Chemical & Engineering Data, 1999, 44, 1002-1008.	1.9	15
100	A family of solution-processable macrocyclic and open-chain oligothiophenes with atropoisomeric scaffolds: structural and electronic features for potential energy applications. New Journal of Chemistry, 2017, 41, 10009-10019.	2.8	15
101	Characterization and use of aqueous caesium chloride as an ultra-concentrated salt bridge. Journal of Applied Electrochemistry, 1990, 20, 651-655.	2.9	14
102	Characterization of Lithium Sulfate as an Unsymmetrical-Valence Salt Bridge for the Minimization of Liquid Junction Potentials in Aqueousâ `Organic Solvent Mixtures. Analytical Chemistry, 1998, 70, 2589-2595.	6.5	14
103	Triple bulk heterojunctions as means for recovering the microstructure of photoactive layers in organic solar cell devices. Solar Energy Materials and Solar Cells, 2014, 120, 37-47.	6.2	14
104	Electrocatalytic reduction of bromothiophenes on gold and silver electrodes: An example of synergy in electrocatalysis. Electrochemistry Communications, 2014, 38, 100-103.	4.7	13
105	Highlighting spin selectivity properties of chiral electrode surfaces from redox potential modulation of an achiral probe under an applied magnetic field. Chemical Science, 2019, 10, 2750-2757.	7.4	13
106	Widening the Scope of "Inherently Chiral―Electrodes: Enantiodiscrimination of Chiral Electroactive Probes with Planar Stereogenicity. ChemElectroChem, 2020, 7, 3429-3438.	3.4	13
107	Thermodynamics of the cell { Li- Amalgam LiX (m) AgX Ag }(X=Cl,Br) and medium effects upon LiX in (acetonitrile + water), (1,4-dioxane + water), and (methanol + water) solvent mixtures with related solvation parameters. Journal of Chemical Thermodynamics, 2000, 32, 597-616.	2.0	12
108	Phâ€ŧetraMeâ€Bithienine, the First Member of the Class of Chiral Heterophosphepines: Synthesis, Electronic and Steric Properties, Metal Complexes and Catalytic Activity. European Journal of Organic Chemistry, 2013, 2013, 8174-8184.	2.4	12

#	Article	IF	CITATIONS
109	Electrochemistry and Chirality in Bibenzimidazole Systems. Electrochimica Acta, 2015, 179, 250-262.	5.2	12
110	The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells. Dyes and Pigments, 2018, 150, 335-346.	3.7	12
111	Electrochemical studies of a new, low-band gap inherently chiral ethylenedioxythiophene-based oligothiophene. Electrochimica Acta, 2018, 284, 513-525.	5.2	12
112	An unconventional helical push-pull system for solar cells. Dyes and Pigments, 2019, 161, 382-388.	3.7	12
113	Reference value standards for pH measurements in 10, 30, 50, and 70% (w/w) 2-propanol/water solvent mixtures at temperatures from 288.15 to 318.15 K. Analytica Chimica Acta, 1988, 207, 211-223.	5.4	11
114	Mercury(II) oxide and silver(I) oxide electrodes in aqueous solutions (Technical Report). Pure and Applied Chemistry, 1994, 66, 641-647.	1.9	11
115	A new, long-lived Ca-selective electrode. Sensors and Actuators B: Chemical, 1995, 23, 27-33.	7.8	11
116	Transference Numbers of Concentrated Electrolytes and Characterization of Salt Bridges in the Ethanol + Water Solvent Mixtures. Journal of Chemical & Engineering Data, 1995, 40, 862-868.	1.9	11
117	Ferrocene derivatives supported on poly(N-vinylpyrrolidin-2-one) (PVP): Synthesis of new water-soluble electrochemically active probes for biomolecules. Journal of Organometallic Chemistry, 2007, 692, 1363-1371.	1.8	11
118	Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(i) chromophore and a fullerene electron acceptor unit. Photochemical and Photobiological Sciences, 2015, 14, 909-918.	2.9	11
119	Cyclometalated Pt(<scp>ii</scp>) complexes with a bidentate Schiff-base ligand displaying unexpected cis/trans isomerism: synthesis, structures and electronic properties. Dalton Transactions, 2017, 46, 12500-12506.	3.3	11
120	Helicity: A Non-Conventional Stereogenic Element for Designing Inherently Chiral Ionic Liquids for Electrochemical Enantiodifferentiation. Molecules, 2021, 26, 311.	3.8	11
121	Reference value standards for pH measurements, and first ionization constants of o-phthalic acid, in ethanol/water solvent mixtures at temperatures from -5 to +40.degree.C. Journal of Chemical & Engineering Data, 1989, 34, 64-68.	1.9	10
122	Status and problems of standardization of pH scales for controls in different media. Reference value standards in ethylene glycol/water mixed solvents. Fresenius' Journal of Analytical Chemistry, 1991, 339, 608-612.	1.5	10
123	Title is missing!. Journal of Solution Chemistry, 2000, 29, 1199-1210.	1.2	10
124	"Egg of Columbus― Single-step complete removal of chloride impurities from ionic liquids by AgCl deposition on silver electrode. Electrochemistry Communications, 2015, 51, 46-49.	4.7	10
125	The second ionization constant of aqueous sulphuric acid at 298.15 K from the electromotive force of the unbuffered cell: H2(g)/H2SO4(aq)/Hg2SO4(s)/Hg. Journal of Chemical Thermodynamics, 1989, 21, 625-629.	2.0	9
126	The lead amalgam/lead sulfate electrode redesigned and reassessed. Journal of Solution Chemistry, 1997, 26, 337-353.	1.2	9

#	Article	IF	CITATIONS
127	Title is missing!. Journal of Solution Chemistry, 1998, 27, 1-16.	1.2	9
128	Batch effects, water content and aqueous/organic solvent reactivity of microcrystalline cellulose samples. International Journal of Biological Macromolecules, 1999, 26, 269-277.	7.5	9
129	Title is missing!. Angewandte Chemie, 2003, 115, 472-475.	2.0	9
130	Thermodynamics of the amalgam cells {Cs-amalgam CsX (m) AgX Ag} (X=Cl, Br, I) and primary medium effects in (methanol+water), (acetonitrile+water), and (1,4-dioxane+water) solvent mixtures. Journal of Chemical Thermodynamics, 2006, 38, 788-798.	2.0	9
131	L -lysine and EDTA polymer mimics as resins for the quantitative and reversible removal of heavy metal ion water pollutants. Journal of Polymer Science Part A, 2012, 50, 5000-5010.	2.3	9
132	Chiral Biobased Ionic Liquids with Cations or Anions including Bile Acid Building Blocks as Chiral Selectors in Voltammetry. ChemElectroChem, 2021, 8, 1377-1387.	3.4	9
133	Advanced chiral molecular media for enantioselective electrochemistry and electroanalysis. Current Opinion in Electrochemistry, 2021, 30, 100810.	4.8	9
134	Thermodynamics of the amalgam cell {KxHg1â^'x KCl (m) AgCl Ag }and primary medium effects upon KCl in { ethylene glycol + water }, { acetonitrile + water }, and { 1,4-dioxane + water } solvent mixtures. Journal of Chemical Thermodynamics, 2000, 32, 107-122.	2.0	8
135	Electrochemistry of cyclic triimidazoles and their halo derivatives: A casebook for multiple equivalent centers and electrocatalysis. Electrochimica Acta, 2019, 317, 272-280.	5.2	8
136	Modulating the Enantiodiscrimination Features of Inherently Chiral Selectors by Molecular Design: A HPLC and Voltammetry Study Case with Atropisomeric 2,2'â€Biindoleâ€Based Monomers and Oligomer Films. Chemistry - A European Journal, 2021, 27, 13190-13202.	3.3	8
137	Characterization of aqueous rubidium chloride as an equitransferent ultraconcentrated salt bridge. Journal of Applied Electrochemistry, 1996, 26, 337.	2.9	7
138	Thermodynamics of the amalgam cell {LixHg1â^'x Li2SO4(m) Hg2SO4 Hg} in water, (methanol +) Tj ETQq0 0 985-997.	0 rgBT /C 2.0	overlock 10 T 7
139	Introducing the primary pH-metric standardization in nonaqueous solvents of extremely high permittivities: behaviour of the potassium hydrogen phthalate buffer in formamide, and acquisition of an appropriate salt bridge for pH measurements. Electrochemistry Communications, 2002, 4, 146-150.	4.7	7
140	Thermodynamics of the amalgam cells {M-Amalgam MCl or MCl2 (m) AgCl Ag} (M=Rb, Cs, Sr, Ba) and primary medium effects in (acetonitrile+water). Journal of Chemical Thermodynamics, 2004, 36, 465-471.	2.0	6
141	Determination of Primary and Secondary Standards and Characterization of Appropriate Salt Bridges for pH Measurements in Formamide. Analytical Chemistry, 2004, 76, 528-535.	6.5	6
142	A Comparative Study of Electrochemical, Spectroscopic and Structural Properties of Phenyl, Thienyl and Furyl Substituted Ethylenes. ChemistrySelect, 2017, 2, 2763-2773.	1.5	6
143	β-Diketonate ancillary ligands in heteroleptic iridium complexes: a balance between synthetic advantages and photophysical troubles. Photochemical and Photobiological Sciences, 2018, 17, 1169-1178.	2.9	6
144	Selfâ€Standing Membranes Consisting of Inherently Chiral Electroactive Oligomers: Electrosynthesis, Characterization and Preliminary Tests in Potentiometric Setups. ChemElectroChem, 2019, 6, 4204-4214.	3.4	6

#	Article	IF	CITATIONS
145	Thermodynamics of the hydrogen-silver chloride cell in ethanol-water mixtures from ?10 to +40�C. Journal of Solution Chemistry, 1988, 17, 417-427.	1.2	5
146	A Study of the Equitransference Level of Concentrated Aqueous RbBr, RbI and NH ₄ I, and their Characterization as Ultraâ€Concentrated Salt Bridges for the Minimization of Liquid Junction Potentials. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 1034-1036.	0.9	5
147	Characterization of Potassium Chloride as an Equitransferent "Intersolvental―Salt Bridge. Journal of Solution Chemistry, 1999, 28, 1329-1340.	1.2	5
148	Thermodynamics of the cell Pt H2(p) HCl (m) AgCl Ag and primary medium effects upon HCl in (glycerol + water) solvents. Journal of Chemical Thermodynamics, 2001, 33, 499-512.	2.0	5
149	The Cosolvent Effect on the Transport Parameters of HCl in Aqueous + Organic Solvent Mixtures. Journal of Chemical & Engineering Data, 2004, 49, 1565-1573.	1.9	5
150	High-yield syntheses of [Rh7(CO)16]3â^' and [Rh14(CO)25]4â^' working in ethylene glycol solution under 1atm of CO. Journal of Organometallic Chemistry, 2009, 694, 3718-3724.	1.8	5
151	Cyclic dimers of variable size, formed from FeCu carbide clusters: Synthesis, structure and electrochemical behaviour of [{Fe4C(CO)12Cu2(μ-X)}2]nâ^', (XÂ=Âphenylthiolate, pyrazolate, (nÂ=Â2) or) Tj I	ETQiqal 1 0	.78\$4314 rg8T
152	Dinuclear Rhenium Complexes as Redox-Active Pendants in a Novel Electrodeposited Polycyclopentadithiophene Material. Inorganic Chemistry, 2014, 53, 11242-11251.	4.0	5
153	Inherently Chiral Macrocyclic Oligothiophenes: Easily Accessible Electrosensitive Cavities with Outstanding Enantioselection Performances. Chemistry - A European Journal, 2014, 20, 15261-15261.	3.3	5
154	2,12-Diaza[6]helicene: An Efficient Non-Conventional Stereogenic Scaffold for Enantioselective Electrochemical Interphases. Chemosensors, 2021, 9, 216.	3.6	5
155	Sulfate-sensing electrodes. The lead- amalgam/lead-sulfate electrode (IUPAC Technical Report). Pure and Applied Chemistry, 2002, 74, 593-600.	1.9	5
156	Evaluating membrane cell e.m.f.Å› from different schems of integration of the relevant nernstian equations. Journal of Membrane Science, 1987, 34, 345-353.	8.2	4
157	Transference numbers of aqueous HCl up to 15 mol-kg?1 at 25�C: A systematization and reassessment. Journal of Solution Chemistry, 1995, 24, 311-324.	1.2	4
158	Thermodynamics of the amalgam cell: {Me _{<i>x</i>} Hg _{1â€<i>x</i>} MeCl(<i>m</i>) AgCl Ag} (with Me = K, Rb) in (methanol+water) solvent mixtures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 842-846.	0.9	4
159	An alternative methodology for determining transport parameters of electrolytes in mixed solvents from concentration cells, without prior knowledge of activity coefficients. Electrochemistry Communications, 2000, 2, 108-111.	4.7	4
160	Thermodynamic Study of the Aqueous (KCl + K2SO4) Electrolyte Based on Potassium Amalgam Electrode Cells. Journal of Chemical & Engineering Data, 2003, 48, 211-216.	1.9	4
161	Thermodynamics of amalgam cells {M-amalgam MCl2 (m) AgCl Ag} (M=Sr, Ba) and primary medium effects in {methanol+water} and {ethanol+water} solvent mixtures. Journal of Chemical Thermodynamics, 2005, 37, 363-369.	2.0	4
162	Fast and quantitative manganese sorption by polyamidoamine resins. Journal of Polymer Science Part A, 2013, 51, 769-773.	2.3	4

#	Article	IF	CITATIONS
163	Effective Enantiodiscrimination in Electroanalysis Based on a New Inherently Chiral 1,1′-Binaphthyl Selector Directly Synthesizable in Enantiopure Form. Molecules, 2020, 25, 2175.	3.8	4
164	Standard aqueous potentials for the {thallium amalgam/thallium(I) iodide} electrode, and thermodynamic solubility product of thallium(I) iodide at temperatures from 298.15 K to 328.15 K. Journal of Chemical Thermodynamics, 1993, 25, 1055-1059.	2.0	3
165	Standards for pH measurements and first ionization constants ofo-phthalic acid. Methylcellosolve-water solvent mixtures from ?10 to 45�C. Journal of Solution Chemistry, 1995, 24, 1265-1279.	1.2	3
166	A thermodynamic study of the aqueous (sodium chloride+sodium hydroxide) electrolyte using sodium amalgam and thallous chloride electrode cells. Journal of Chemical Thermodynamics, 2003, 35, 405-416.	2.0	3
167	Determination of Primary and Secondary Standards for pH Measurements in N-Methylacetamide and Its 0.50 Mass Fraction in Admixture with Water, with Characterization of Appropriate Salt Bridges. Journal of Chemical & Engineering Data, 2007, 52, 1595-1602.	1.9	3
168	A Determination of Standard Potentials and Related Primary pH Standards in the 50 Mass Percent (N-Methyl-2-Pyrrolidinone + Water) Mixture at Various Temperatures. Journal of Solution Chemistry, 2007, 36, 1037-1046.	1.2	3
169	Real surface area of catalytic silver electrodes: the "Subjective―molecular probe perspective. Russian Journal of Electrochemistry, 2008, 44, 104-112.	0.9	3
170	Characterization of Inherently Chiral Electrosynthesized Oligomeric Films by Voltammetry and Scanning Electrochemical Microscopy (SECM). Molecules, 2020, 25, 5368.	3.8	3
171	Transport parameters of LiCl and LiBr in aqueous mixtures with organic solvents of moderate to low permittivities. Physical Chemistry Chemical Physics, 1999, 1, 5685-5688.	2.8	2
172	Competitive Complexation by Ligand and Solvent: Polarographic Characterization of ATRP Catalyst Polyamine–Copper Complexes in Acetonitrile + Water Mixed Solvents. Journal of Solution Chemistry, 2004, 33, 923-940.	1.2	2
173	"Inherently Chiralâ€Ionicâ€Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes. Angewandte Chemie, 2017, 129, 2111-2114.	2.0	2
174	Trópos and Ãŧropos biindole chiral electroactive monomers A voltammetry and HPLC comparative insight. ChemElectroChem, 0, , .	3.4	2
175	Thermodynamic interpretation of polyionic membrane cell emf's in terms of mixed electrolytes activities. Journal of Membrane Science, 1996, 111, 217-226.	8.2	1
176	Medium Effects and Determination of Primary and Secondary Standards for pH Measurements in (Glycerol + Water) Solvent Media at Normal and Subzero Temperatures, With Characterization of Appropriate Salt Bridges. Journal of Chemical & Engineering Data, 2009, 54, 286-293.	1.9	1
177	Comparative Investigations on Platinum Cluster Salts. Johnson Matthey Technology Review, 2014, 58, 114-123.	1.0	1
178	Activation of the Carbon–Halogen Bond. , 2015, , 917-940.		1
179	Problems of Electrochemical Controls of Oxidation-Reduction Systems in Aqueous-Organic and Nonaqueous Media. The rH Index with Establishment of the Relevant Scales and Standards. Collection of Czechoslovak Chemical Communications, 2003, 68, 1605-1620.	1.0	1
180	on Gold and Silver Electrodes: enhancement from S specific adsorption and modulation from substituent effects. Electrochimica Acta, 2021, , 139563.	5.2	1

PATRIZIA MUSSINI

#	Article	IF	CITATIONS
181	Metalâ€free phthalimideâ€labeled peptide nucleic acids for electrochemical biosensing applications. Electrochemical Science Advances, 2022, 2, .	2.8	1
182	Organic halide electroreduction on silver. Annali Di Chimica, 2001, 91, 151-9.	0.6	1
183	Selective electrodehalogenation of bromophenols on Ag electrocatalyst. Annali Di Chimica, 2002, 92, 963-72.	0.6	1
184	Ionization constants ofo-phthalic acid in (propylene carbonate + water) and (ethylene carbonate +) Tj ETQq0 0 0 Thermodynamics, 2001, 33, 1473-1483.	rgBT /Ove 2.0	erlock 10 Tf 5 0
185	Inherently Chiral Spider-Like Oligothiophenes. Chemistry - A European Journal, 2016, 22, 10685-10685.	3.3	Ο
186	Rücktitelbild: "Inherently Chiral―Ionic‣iquid Media: Effective Chiral Electroanalysis on Achiral Electrodes (Angew. Chem. 8/2017). Angewandte Chemie, 2017, 129, 2254-2254.	2.0	0
187	10.1007/s11175-008-1015-8. , 2010, 44, 104.		0
188	Effect of the salt bridge choice on the response of an ion selective electrode cell. Annali Di Chimica, 2001, 91, 667-70.	0.6	0
189	rH-metric controls and primary standardization in aqueous-organic media. Annali Di Chimica, 2002, 92, 945-54.	0.6	0
190	Problems in assessments of amalgam electrodes for standardising or certifying the corresponding ion selective electrodes. Annali Di Chimica, 2003, 93, 191-7.	0.6	0
191	Cover Feature: <i>Trópos</i> and <i>Ãŧropos</i> Biindole Chiral Electroactive Monomers: A Voltammetry and HPLC Comparative Insight (ChemElectroChem 6/2022). ChemElectroChem, 2022, 9, .	3.4	Ο