Salvador Izquierdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912638/publications.pdf

Version: 2024-02-01

759233 501196 35 814 12 28 citations h-index g-index papers 35 35 35 930 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, 2008, 82, 929-939.	6.1	269
2	Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy, 2010, 38, 6215-6221.	8.8	110
3	Roof-top solar energy potential under performance-based building energy codes: The case of Spain. Solar Energy, 2011, 85, 208-213.	6.1	55
4	Challenges in the electrochemical modelling of solid oxide fuel and electrolyser cells. Renewable and Sustainable Energy Reviews, 2014, 33, 701-718.	16.4	50
5	Characteristic nonreflecting boundary conditions for open boundaries in lattice Boltzmann methods. Physical Review E, 2008, 78, 046707.	2.1	49
6	An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells. Computer Physics Communications, 2012, 183, 125-146.	7.5	37
7	Finite element implementation and validation of wear modelling in sliding polymer–metal contacts. Wear, 2012, 284-285, 52-64.	3.1	37
8	Analysis of open boundary effects in unsteady lattice Boltzmann simulations. Computers and Mathematics With Applications, 2009, 58, 914-921.	2.7	25
9	Analysis of mixed adhesive joints considering the compaction process. International Journal of Adhesion and Adhesives, 2017, 76, 3-10.	2.9	20
10	Optimal preconditioning of lattice Boltzmann methods. Journal of Computational Physics, 2009, 228, 6479-6495.	3.8	16
11	Industrial digitalization in the industry 4.0 era: Classification, reuse and authoring of digital models on Digital Twin platforms. Array, 2022, 14, 100176.	4.0	14
12	Supply-cost curves for geographically distributed renewable-energy resources. Energy Policy, 2010, 38, 667-672.	8.8	13
13	Multiscale characterization of computational rough surfaces and their wear using self-affine principal profiles. Wear, 2012, 274-275, 1-7.	3.1	13
14	Preconditioned Navier-Stokes schemes from the generalised lattice Boltzmann equation. Progress in Computational Fluid Dynamics, 2008, 8, 189.	0.2	12
15	A Digital Twin for Friction Prediction in Dynamic Rubber Applications with Surface Textures. Lubricants, 2021, 9, 57.	2.9	12
16	Momentum transfer correction for macroscopic-gradient boundary conditions in lattice Boltzmann methods. Journal of Computational Physics, 2010, 229, 2497-2506.	3.8	10
17	Quadrature-based moment closures for non-equilibrium flows: Hard-sphere collisions and approach to equilibrium. Journal of Computational Physics, 2012, 231, 7431-7449.	3.8	9
18	A molecular dynamics model to measure forces between cellulose fibril surfaces: on the effect of non-covalent polyelectrolyte adsorption. Cellulose, 2019, 26, 1449-1466.	4.9	9

#	Article	IF	CITATIONS
19	TWINKLE: A digital-twin-building kernel for real-time computer-aided engineering. SoftwareX, 2020, 11, 100419.	2.6	9
20	Direct numerical simulation of complex viscoelastic flows via fast lattice-Boltzmann solution of the Fokker–Planck equation. Journal of Non-Newtonian Fluid Mechanics, 2013, 201, 29-38.	2.4	8
21	Numerical Approach for the Assessment of Micro-Textured Walls Effects on Rubber Injection Moulding. Polymers, 2021, 13, 1739.	4.5	6
22	Porous-layer model for laminar liquid flow in rough microchannels. Microfluidics and Nanofluidics, 2010, 9, 1063-1075.	2.2	5
23	Multi-scale permeability of deformable fibrous porous media. Chemical Engineering Science, 2015, 126, 471-482.	3.8	5
24	Virtual Sensor Development for Continuous Microfluidic Processes. IEEE Transactions on Industrial Informatics, 2020, 16, 7774-7781.	11,3	4
25	Generalized analytical solution for compressive forces in adhesively-bonded-joint assembling. International Journal of Adhesion and Adhesives, 2014, 52, 26-30.	2.9	3
26	Rubber Material-Model Characterization for Coupled Thermo-Mechanical Vulcanization Foaming Processes. Polymers, 2022, 14, 1101.	4.5	3
27	Lattice-Boltzmann LES of Vortex Shedding in the Wake of a Square Cylinder. , 2007, , 203-217.		2
28	A simple numerical methodology for thermal-fluid-structural interactions of air damping over heated micro-cantilevers. Microfluidics and Nanofluidics, 2012, 13, 131-140.	2.2	2
29	Virtual Sensor Development Based on Reduced Order Models of CFD Data. , 2019, , .		2
30	Modelling of Couette flow in microchannels with textured surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226, 14-22.	1.8	1
31	Reduced order models for uncertainty management and zero-defect control in seal manufacturing. , 2019, , .		1
32	Data-driven modeling of semi-batch manufacturing: a rubber compounding test case., 2019,,.		1
33	Reduced-order modelling of equations of state using tensor decomposition for robust, accurate and efficient property calculation in high-pressure fluid flow simulations. Journal of Supercritical Fluids, 2020, 165, 104938.	3.2	1
34	A Practical Approach for Uncertainty Management in Rubber Manufacturing Processes Using Physics-Informed Real-Time Models. Polymers, 2022, 14, 2049.	4.5	1
35	IMPROVING THE ACCURACY OF LATTICE BOLTZMANN SIMULATIONS OF LIQUID MICROFLOWS. International Journal for Multiscale Computational Engineering, 2011, 9, 89-96.	1.2	0