Tatum S Simonson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126124/publications.pdf

Version: 2024-02-01

70 papers

3,613 citations

257101 24 h-index 53 g-index

71 all docs

71 docs citations

times ranked

71

4294 citing authors

#	Article	IF	CITATIONS
1	Genetic Evidence for High-Altitude Adaptation in Tibet. Science, 2010, 329, 72-75.	6.0	971
2	A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 2014, 46, 951-956.	9.4	322
3	Global Genetic Population Structure of Bacillus anthracis. PLoS ONE, 2007, 2, e461.	1.1	317
4	Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13536-13541.	3.3	243
5	Maximum-likelihood estimation of recent shared ancestry (ERSA). Genome Research, 2011, 21, 768-774.	2.4	142
6	Strain-Specific Single-Nucleotide Polymorphism Assays for the Bacillus anthracis Ames Strain. Journal of Clinical Microbiology, 2007, 45, 47-53.	1.8	126
7	Genetic determinants of Tibetan high-altitude adaptation. Human Genetics, 2012, 131, 527-533.	1.8	124
8	Altitude Adaptation: A Glimpse Through Various Lenses. High Altitude Medicine and Biology, 2015, 16, 125-137.	0.5	121
9	Evolutionary history of Tibetans inferred from whole-genome sequencing. PLoS Genetics, 2017, 13, e1006675.	1.5	89
10	Bacillus anthracis in China and its relationship to worldwide lineages. BMC Microbiology, 2009, 9, 71.	1.3	85
11	Toward a more uniform sampling of human genetic diversity: A survey of worldwide populations by high-density genotyping. Genomics, 2010, 96, 199-210.	1.3	73
12	Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Molecular Genetics and Metabolism, 2012, 106, 244-247.	0.5	68
13	Use of Single Nucleotide Polymorphisms in the plcR Gene for Specific Identification of Bacillus anthracis. Journal of Clinical Microbiology, 2005, 43, 1995-1997.	1.8	66
14	Silent hypoxaemia in COVIDâ€19 patients. Journal of Physiology, 2021, 599, 1057-1065.	1.3	64
15	Mass spectrometry provides accurate characterization of two genetic marker types in <i>Bacillus anthracis</i> . BioTechniques, 2004, 37, 642-651.	0.8	56
16	Signatures of the Preagricultural Peopling Processes in Sub-Saharan Africa as Revealed by the Phylogeography of Early Y Chromosome Lineages. Molecular Biology and Evolution, 2011, 28, 2603-2613.	3.5	52
17	Crohn's Disease and Genetic Hitchhiking at IBD5. Molecular Biology and Evolution, 2012, 29, 101-111.	3.5	52
18	Use of a Real-Time PCR TaqMan Assay for Rapid Identification and Differentiation of Burkholderia pseudomallei and Burkholderia mallei. Journal of Clinical Microbiology, 2005, 43, 5771-5774.	1.8	50

#	Article	IF	CITATIONS
19	Genomic Analysis of Natural Selection and Phenotypic Variation in High-Altitude Mongolians. PLoS Genetics, 2013, 9, e1003634.	1.5	48
20	Metabolic aspects of highâ€altitude adaptation in Tibetans. Experimental Physiology, 2015, 100, 1247-1255.	0.9	48
21	Cross-Species Insights Into Genomic Adaptations to Hypoxia. Frontiers in Genetics, 2020, 11, 743.	1.1	48
22	Shared and Unique Signals of High-Altitude Adaptation in Geographically Distinct Tibetan Populations. PLoS ONE, 2014, 9, e88252.	1,1	44
23	Cognitive function and mood at high altitude following acclimatization and use of supplemental oxygen and adaptive servoventilation sleep treatments. PLoS ONE, 2019, 14, e0217089.	1.1	37
24	Genetic adaptation to extreme hypoxia:. Blood Cells, Molecules, and Diseases, 2009, 43, 221-225.	0.6	25
25	Adaptive Servoventilation as Treatment for Central Sleep Apnea Due to High-Altitude Periodic Breathing in Nonacclimatized Healthy Individuals. High Altitude Medicine and Biology, 2018, 19, 178-184.	0.5	25
26	Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. ELife, 2022, 11 , .	2.8	22
27	Measurement of the distribution of ventilation-perfusion ratios in the human lung with proton MRI: comparison with the multiple inert-gas elimination technique. Journal of Applied Physiology, 2017, 123, 136-146.	1.2	20
28	Metabolic adaptation to high altitude. Current Opinion in Endocrine and Metabolic Research, 2020, 11, 33-41.	0.6	20
29	Limited Distribution of a Cardiomyopathyâ€Associated Variant in India. Annals of Human Genetics, 2010, 74, 184-188.	0.3	19
30	Genetic variants at the <i>EGLN1</i> locus associated with highâ€altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Annals of Human Genetics, 2019, 83, 171-176.	0.3	19
31	Adaptive Potential of the Heme Oxygenase/Carbon Monoxide Pathway During Hypoxia. Frontiers in Physiology, 2020, 11, 886.	1.3	19
32	Neuronal HIFâ€1α in the nucleus tractus solitarius contributes to ventilatory acclimatization to hypoxia. Journal of Physiology, 2020, 598, 2021-2034.	1.3	19
33	Targeting Mitochondria and Metabolism in Acute Kidney Injury. Journal of Clinical Medicine, 2021, 10, 3991.	1.0	19
34	Ancestry of the Iban Is Predominantly Southeast Asian: Genetic Evidence from Autosomal, Mitochondrial, and Y Chromosomes. PLoS ONE, 2011, 6, e16338.	1.1	17
35	Halofuginone, a promising drug for treatment of pulmonary hypertension. British Journal of Pharmacology, 2021, 178, 3373-3394.	2.7	15
36	Combined intermittent and sustained hypoxia is a novel and deleterious cardio-metabolic phenotype. Sleep, 2022, 45, .	0.6	14

3

#	Article	IF	CITATIONS
37	Endothelial plateletâ€derived growth factorâ€mediated activation of smooth muscle plateletâ€derived growth factor receptors in pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-15.	0.8	13
38	Ward, Milledge and West's High Altitude Medicine and Physiology. , 0, , .		12
39	High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology, 2022, 37, 175-186.	1.6	12
40	Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes. Pulmonary Circulation, 2020, 10, 1-5.	0.8	11
41	Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Frontiers in Genetics, 2020, 11, 471.	1.1	10
42	Impacts of Changes in Atmospheric O2 on Human Physiology. Is There a Basis for Concern?. Frontiers in Physiology, 2021, 12, 571137.	1.3	10
43	Relationships Between Chemoreflex Responses, Sleep Quality, and Hematocrit in Andean Men and Women. Frontiers in Physiology, 2020, 11 , 437.	1.3	10
44	Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life, 2022, 12, 437.	1.1	8
45	Diagnostic Accuracy of the Progressive Collapsing Foot Deformity (PCFD) Classification. Foot and Ankle International, 2022, 43, 800-809.	1.1	6
46	Oxygen transport adaptations to exercise in native highland populations. Experimental Physiology, 2015, 100, 1231-1232.	0.9	5
47	A Novel PHD2 Mutation Associated with Tibetan Genetic Adaptation to High Altitude Hypoxia Blood, 2010, 116, 2602-2602.	0.6	5
48	Variability in hypoxic response: Could genetics play a role?. Journal of Physiology, 2020, 598, 1805-1806.	1.3	4
49	Less is more: blunted responses to hypoxia revealed in sea-level Tibetans. Journal of Applied Physiology, 2014, 116, 711-712.	1.2	2
50	Control of Breathing. , 2021, , 205-218.		1
51	Upregulation of Calcium Homeostasis Modulators in Contractile-To-Proliferative Phenotypical Transition of Pulmonary Arterial Smooth Muscle Cells. Frontiers in Physiology, 2021, 12, 714785.	1.3	1
52	Genetic Missense Variants at the EGLN1 Locus Associated with Highâ€Altitude Adaptation in Tibetans are Rare in Andeans. FASEB Journal, 2018, 32, lb478.	0.2	1
53	Exercise capacity and oxygen transport in native Tibetan highlanders with high―compared to lowâ€hemoglobin concentration. FASEB Journal, 2012, 26, lb775.	0.2	1
54	Similar peak VO2 at altitude in native lowland (Han Chinese) and Tibetan highland inhabitants despite different hemoglobin concentration [Hb]. FASEB Journal, 2012, 26, lb804.	0.2	1

#	Article	IF	CITATIONS
55	Increased Levels of Interleukinâ€6 (ILâ€6) in Andean Males with Chronic Mountain Sickness and Seaâ€Level Participants After One Day at High Altitude May Reflect Differences in ILâ€6 Regulation. FASEB Journal, 2018, 32, lb479.	0.2	1
56	High-altitude physiology: lessons from Tibet. , 2013, , .		0
57	Reply. Experimental Physiology, 2015, 100, 342-342.	0.9	O
58	Giants in Chest Medicine: Emeritus Professor Peter D. Wagner, MD. Chest, 2019, 155, 9-11.	0.4	0
59	Unique Cardioâ€metabolic Consequences of Superimposed Sustained and Intermittent Hypoxia. FASEB Journal, 2021, 35, .	0.2	0
60	Tibetans at intermediate altitude exhibit lower hemoglobin concentration and distinct responses to poikilocapnic hypoxia relative to Han Chinese residents. FASEB Journal, 2021, 35, .	0.2	0
61	Human Adaptations to High Altitude. , 2021, , 19-23.		0
62	Higher Peak Vâ€O2 in a Decremental Exercise Protocol Compared to a Standard Incremental Test. Medicine and Science in Sports and Exercise, 2015, 47, 157.	0.2	0
63	Differences in Peak VO2 Among Healthy Andean Highlanders and Males with Chronic Mountain Sickness Before and After Isovolemic Hemodilution at 4350m. FASEB Journal, 2018, 32, lb412.	0.2	0
64	Hemeâ€oxygenase 2 (HMOX2) variants associated with evolutionary adaptation and hemoglobin concentration in Tibetans are common in Andean Highlanders. FASEB Journal, 2018, 32, lb413.	0.2	0
65	Excessive erythrocytosis in highâ€altitude residents is associated with modest impairments in shortâ€term memory and processing speed. FASEB Journal, 2019, 33, 551.2.	0.2	0
66	Increased Serum Erythropoietin despite Normalized Hb Concentration and Arterial O 2 Saturation in Chronic Mountain Sickness after Isovolemic Hemodilution. FASEB Journal, 2019, 33, lb592.	0.2	0
67	Exerciseâ€induced increase in hemoglobin concentration at intermediate and high altitudes in Andeans, Tibetans and Han Chinese. FASEB Journal, 2020, 34, 1-1.	0.2	0
68	Tibetans resident at intermediate altitude (1300 m, 4327 ft) show similar hypoxic ventilatory responses but blunted heart rate responses to poikilocapnic hypoxia. FASEB Journal, 2020, 34, 1-1.	0.2	0
69	Tibetans and Han Chinese residents at intermediate altitude respond differently to chronic and simulated altitudeâ€induced hypoxia. FASEB Journal, 2020, 34, 1-1.	0.2	0
70	Tibetan and Han Chinese oxygen transport at 2200 m and simulated 4200 m during peak exercise. FASEB Journal, 2020, 34, 1-1.	0.2	0