Silvia Dante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Synuclein interacts differently with membranes mimicking the inner and outer leaflets of neuronal membranes. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183814.	2.6	3
2	Indium based metal-organic framework/carbon nanotubes composite as a template for In2O3 porous hexagonal prisms/carbon nanotubes hybrid structure and their application as promising super-capacitive electrodes. Journal of Energy Storage, 2022, 51, 104238.	8.1	6
3	Antioxidant coatings from elastomeric vinyl acetate-vinyl laurate copolymers with reduced bacterial adhesion. Progress in Organic Coatings, 2022, 168, 106883.	3.9	3
4	Non-disruptive uptake of anionic and cationic gold nanoparticles in neutral zwitterionic membranes. Scientific Reports, 2021, 11, 1256.	3.3	20
5	Correlative nanoscopy: A multimodal approach to molecular resolution. Microscopy Research and Technique, 2021, 84, 2472-2482.	2.2	8
6	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021, 12, 8583-8590.	4.6	12
7	Emergence of Electric Fields at the Water–C12E6 Surfactant Interface. Journal of the American Chemical Society, 2021, 143, 15103-15112.	13.7	16
8	Quantitative Super-Resolution Microscopy to Assess Adhesion of Neuronal Cells on Single-Layer Graphene Substrates. Membranes, 2021, 11, 878.	3.0	3
9	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. Nanoscale, 2020, 12, 19746-19759.	5.6	23
10	Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Frontiers in Molecular Biosciences, 2020, 7, 15.	3.5	21
11	Graphene–enhanced differentiation of neuroblastoma mouse cells mediated by poly-D-lysine. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110991.	5.0	8
12	Bioresin-based superhydrophobic coatings with reduced bacterial adhesion. Journal of Colloid and Interface Science, 2020, 574, 20-32.	9.4	50
13	Poly(furfuryl alcohol)-Polycaprolactone Blends. Polymers, 2019, 11, 1069.	4.5	23
14	Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach. ACS Chemical Neuroscience, 2019, 10, 618-627.	3.5	5
15	Toxic HypF-N Oligomers Selectively Bind the Plasma Membrane to Impair Cell Adhesion Capability. Biophysical Journal, 2018, 114, 1357-1367.	0.5	8
16	Amyloid and membrane complexity: The toxic interplay revealed by AFM. Seminars in Cell and Developmental Biology, 2018, 73, 82-94.	5.0	34
17	Developmental refinement of synaptic transmission on micropatterned single layer graphene. Acta Biomaterialia, 2018, 65, 363-375.	8.3	14
18	Biocompatibility of a Magnetic Tunnel Junction Sensor Array for the Detection of Neuronal Signals in Culture. Frontiers in Neuroscience, 2018, 12, 909.	2.8	15

#	Article	IF	CITATIONS
19	Single layer graphene functionalized MEA for enhanced detection of neuronal network development. Sensors and Actuators B: Chemical, 2018, 277, 224-233.	7.8	15
20	Step-by-step surface potential tuning of patterned graphene by polyelectrolyte coating. Thin Solid Films, 2018, 660, 253-257.	1.8	4
21	Scanning Kelvin Probe Microscopy: Challenges and Perspectives towards Increased Application on Biomaterials and Biological Samples. Materials, 2018, 11, 951.	2.9	40
22	A Short-Chain Multibranched Perfluoroalkyl Thiol for More Sustainable Hydrophobic Coatings. ACS Sustainable Chemistry and Engineering, 2018, 6, 9734-9743.	6.7	34
23	Induced inhomogeneity in graphene work function due to graphene - TiO 2 /Ag/glass substrate interaction. Thin Solid Films, 2017, 628, 43-49.	1.8	11
24	Towards a single bioactive substrate combining SERS-effect and drug release control based on thin anodic porous alumina coated with gold and with lipid bilayers. MRS Advances, 2017, 2, 1597-1604.	0.9	1
25	Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. ACS Nano, 2017, 11, 6630-6640.	14.6	85
26	Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring. Nanotechnology, 2017, 28, 034001.	2.6	21
27	Generation of a Functional Human Neural Network by NDM29 Overexpression in Neuroblastoma Cancer Cells. Molecular Neurobiology, 2017, 54, 6097-6106.	4.0	8
28	Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina. Beilstein Journal of Nanotechnology, 2017, 8, 74-81.	2.8	12
29	Fabrication of Gold-Coated Ultra-Thin Anodic Porous Alumina Substrates for Augmented SERS. Materials, 2016, 9, 403.	2.9	19
30	PEGylated gold nanorods as optical trackers for biomedical applications: an <i>in vivo</i> and <i>in vito</i> comparative study. Nanotechnology, 2016, 27, 255101.	2.6	27
31	Temperature, surface morphology and biochemical cues: A combined approach to influence the molecular conformation of Alpha-synuclein. Microelectronic Engineering, 2016, 158, 64-68.	2.4	3
32	Specific Neuron Placement on Gold and Silicon Nitride-Patterned Substrates through a Two-Step Functionalization Method. Langmuir, 2016, 32, 6319-6327.	3.5	17
33	Selective Interaction between Toxic Amyloid Oligomers and the Cell Membrane Revealed by Innovative AFM Applications. Biophysical Journal, 2016, 110, 498a.	0.5	0
34	Electrophysiology of Patterned Neuronal Networks on Monolayer Graphene. Biophysical Journal, 2016, 110, 41a.	0.5	1
35	Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams. Optics and Lasers in Engineering, 2016, 76, 57-63.	3.8	5
36	Interaction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy. Oncotarget, 2016, 7, 44991-45004.	1.8	23

#	Article	IF	CITATIONS
37	High resolution nanomechanical characterization of multiâ€domain model membranes by fast Force Volume. Journal of Molecular Recognition, 2015, 28, 742-750.	2.1	11
38	Correlative nanoscopy: super resolved fluorescence and atomic force microscopy towards nanoscale manipulation and multimodal investigations. Microscopy and Microanalysis, 2015, 21, 2351-2352.	0.4	2
39	Robust and Biodegradable Elastomers Based on Corn Starch and Polydimethylsiloxane (PDMS). ACS Applied Materials & Interfaces, 2015, 7, 3742-3753.	8.0	101
40	Thin nanoporous alumina-based SERS platform for single cell sensing. Applied Surface Science, 2015, 351, 738-745.	6.1	31
41	Synchrotron μ-FTIR highlights amyloid-β conformational changes under the effect of surface wettability and external agents. Vibrational Spectroscopy, 2015, 80, 30-35.	2.2	6
42	Superhydrophobic Surfaces Boost Fibril Self-Assembly of Amyloid β Peptides. ACS Applied Materials & Interfaces, 2015, 7, 20875-20884.	8.0	26
43	Biomedical Applications of Anodic Porous Alumina. Current Nanoscience, 2015, 11, 572-580.	1.2	31
44	Cholesterol Drives Aβ(1–42) Interaction with Lipid Rafts in Model Membranes. Langmuir, 2014, 30, 13934-13941.	3.5	29
45	Multifunctional substrates of thin porous alumina for cell biosensors. Journal of Materials Science: Materials in Medicine, 2014, 25, 2411-2420.	3.6	36
46	Amyloid β Peptide Conformational Changes in the Presence of a Lipid Membrane System. Langmuir, 2014, 30, 3191-3198.	3.5	45
47	Simple and effective graphene laser processing for neuron patterning application. Scientific Reports, 2013, 3, 1954.	3.3	55
48	A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates. Biosensors and Bioelectronics, 2013, 48, 172-179.	10.1	27
49	Different effects of Alzheimer's peptide Aβ(1–40) oligomers and fibrils on supported lipid membranes. Biophysical Chemistry, 2013, 182, 23-29.	2.8	51
50	Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays. Lab on A Chip, 2013, 13, 4419.	6.0	22
51	Beam induced deposition of 3D electrodes to improve coupling to cells. Microelectronic Engineering, 2012, 97, 365-368.	2.4	10
52	AFM characterization of biomolecules in physiological environment by an advanced nanofabricated probe. Microscopy Research and Technique, 2012, 75, 1723-1731.	2.2	7
53	Emergent Functional Properties of Neuronal Networks with Controlled Topology. PLoS ONE, 2012, 7, e34648.	2.5	102
54	Nanoscale structural and mechanical effects of beta-amyloid (1–42) on polymer cushioned membranes: A combined study by neutron reflectometry and AFM Force Spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2646-2655.	2.6	42

#	Article	IF	CITATIONS
55	Investigation of stratum corneum lipid model membranes with free fatty acid composition by neutron diffraction. European Biophysics Journal, 2010, 39, 1167-1176.	2.2	16
56	Force spectroscopy as a tool to investigate the properties of supported lipid membranes. Microscopy Research and Technique, 2010, 73, 965-972.	2.2	29
57	AFM measurement of the stiffness of layers of agarose gel patterned with polylysine. Microscopy Research and Technique, 2010, 73, 982-990.	2.2	24
58	Alzheimer's disease amyloid-β peptide analogue alters the ps-dynamics of phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1969-1976.	2.6	38
59	Intercalation of Single-Strand Oligonucleotides between Nucleolipid Anionic Membranes: A Neutron Diffraction Study. Langmuir, 2009, 25, 4084-4092.	3.5	15
60	Basic Nanostructure of Stratum Corneum Lipid Matrices Based on Ceramides [EOS] and [AP]: A Neutron Diffraction Study. Biophysical Journal, 2009, 97, 1104-1114.	0.5	73
61	Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study. European Biophysics Journal, 2008, 37, 759-771.	2.2	46
62	Localisation of partially deuterated cholesterol in quaternary SC lipid model membranes: a neutron diffraction study. European Biophysics Journal, 2008, 37, 1051-1057.	2.2	30
63	Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. European Biophysics Journal, 2008, 37, 989-999.	2.2	52
64	Water distribution function across the curved lipid bilayer: SANS study. Chemical Physics, 2008, 345, 185-190.	1.9	9
65	Membrane Fusogenic Activity of the Alzheimer's Peptide Aβ(1–42) Demonstrated by Small-Angle Neutron Scattering. Journal of Molecular Biology, 2008, 376, 393-404.	4.2	52
66	Nucleolipid membranes: structure and molecular recognition. Journal of Physics Condensed Matter, 2008, 20, 104212.	1.8	3
67	The Insertion of the Antimicrobial Peptide Dicynthaurin Monomer in Model Membranes: Thermodynamics and Structural Characterization. Biochemistry, 2007, 46, 5678-5686.	2.5	25
68	Structural Investigation of Bilayers Formed by 1-Palmitoyl-2-Oleoylphosphatidylnucleosides. Biophysical Journal, 2006, 90, 1260-1269.	0.5	18
69	Deuteration can affect the conformational behaviour of amphiphilic α-helical structures. Biophysical Chemistry, 2006, 119, 115-120.	2.8	4
70	Cholesterol inhibits the insertion of the Alzheimer's peptide Aβ(25–35) in lipid bilayers. European Biophysics Journal, 2006, 35, 523-531.	2.2	54
71	New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. European Biophysics Journal, 2005, 34, 1030-1040.	2.2	105
72	Localization of coenzyme Q10 in the center of a deuterated lipid membrane by neutron diffraction. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1710, 57-62.	1.0	73

#	Article	IF	CITATIONS
73	Investigations into the Membrane Interactions of m-Calpain Domain V. Biophysical Journal, 2005, 88, 3008-3017.	0.5	30
74	Insertion of Externally Administered Amyloid β Peptide 25â^'35 and Perturbation of Lipid Bilayers. Biochemistry, 2003, 42, 13667-13672.	2.5	50
75	Membrane Insertion of a Lipidated Ras Peptide Studied by FTIR, Solid-State NMR, and Neutron Diffraction Spectroscopyâ€. Journal of the American Chemical Society, 2003, 125, 4070-4079.	13.7	74
76	Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 149-154.	1.0	102
77	β-Amyloid 25 to 35 Is Intercalated in Anionic and Zwitterionic Lipid Membranes to Different Extents. Biophysical Journal, 2002, 83, 2610-2616.	0.5	77
78	A structural study of lamellar phases formed by nucleoside-functionalized lipids. Applied Physics A: Materials Science and Processing, 2002, 74, s522-s524.	2.3	1
79	Revealing the membrane-bound structure of neurokinin A using neutron diffraction. Physica B: Condensed Matter, 2000, 276-278, 505-507.	2.7	4
80	Nucleation of Iron Oxy-Hydroxide Nanoparticles by Layer-by-Layer Polyionic Assemblies. Langmuir, 1999, 15, 2176-2182.	3.5	91
81	Photoisomerization of Polyionic Layer-by-Layer Films Containing Azobenzene. Langmuir, 1999, 15, 193-201.	3.5	144
82	Self-Assembled Monolayers on (111) Textured Electroless Gold. Langmuir, 1999, 15, 3011-3014.	3.5	26
83	Lipid-drug interaction: thermodynamic and structural effects of antimicotic fluconazole on DPPC liposomes. Chemistry and Physics of Lipids, 1998, 95, 37-47.	3.2	26
84	Langmuir-Blodgett films of bipolar lipids from thermophilic archaea. Materials Science and Engineering C, 1995, 3, 13-21.	7.3	11
85	Organization of bipolar lipids in monolayers at the air-water interface. Thin Solid Films, 1994, 242, 208-212.	1.8	16
86	Surface potential studies of monolayers of surfactant donor and acceptor molecules. Thin Solid Films, 1994, 242, 267-272.	1.8	7
87	On the Structure of Mixed Langmuirâ€Blodgett Films of Two Different Fatty Acid Salts. Molecular Crystals and Liquid Crystals, 1992, 215, 205-211.	0.3	2