Junmin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9125929/publications.pdf Version: 2024-02-01

ΙΠΝΜΙΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	23.0	238
2	N-Doped Graphene Supported Cu Single Atoms: Highly Efficient Recyclable Catalyst for Enhanced C–N Coupling Reactions. ACS Nano, 2022, 16, 1142-1149.	7.3	36
3	Tumor Microenvironment Activated Chemodynamic–Photodynamic Therapy by Multistage Selfâ€Assembly Engineered Protein Nanomedicine. Advanced Functional Materials, 2022, 32, .	7.8	15
4	N6-methyladenosine RNA modification of glutamatergic neurons is associated with contextual fear discrimination. Physiology and Behavior, 2022, 248, 113741.	1.0	3
5	Progress in the Electrochemical Reactions of Sulfonyl Compounds. ChemSusChem, 2022, 15, .	3.6	15
6	Umpolung of donor–acceptor cyclopropanes <i>via</i> N-heterocyclic carbene organic catalysis. Organic Chemistry Frontiers, 2021, 8, 5105-5111.	2.3	10
7	Access to 3,3-disubstituted oxindoles <i>via</i> microwave-assisted Cannizzaro and aldol reactions of formaldehyde with isatins and their imines. RSC Advances, 2021, 11, 17320-17323.	1.7	2
8	Photocatalyst- and additive-free decarboxylative alkylation of <i>N</i> -aryl tetrahydroisoquinolines induced by visible light. Organic Chemistry Frontiers, 2021, 8, 2473-2479.	2.3	23
9	Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS Nano, 2021, 15, 8001-8038.	7.3	59
10	Access to Alleneâ€Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angewandte Chemie - International Edition, 2021, 60, 14817-14823.	7.2	16
11	Access to Alleneâ€Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angewandte Chemie, 2021, 133, 14943-14949.	1.6	5
12	Carbene-Catalyzed Atroposelective Annulation and Desymmetrization of Urazoles. Organic Letters, 2021, 23, 3991-3996.	2.4	50
13	Photoinduced Palladium-Catalyzed Intermolecular Radical Cascade Cyclization of <i>N</i> -Arylacrylamides with Unactivated Alkyl Bromides. Organic Letters, 2021, 23, 5631-5635.	2.4	33
14	Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond. Journal of the American Chemical Society, 2021, 143, 12924-12929.	6.6	51
15	Species and formation characteristics of halogenated DBPs in chloramination of tannic acid after biodegradation. Science of the Total Environment, 2021, 781, 146690.	3.9	8
16	Photocatalyst and additive-free visible light induced trifluoromethylation–arylation of <i>N</i> -arylacrylamides with Umemoto's reagent. Chemical Communications, 2021, 57, 1030-1033.	2.2	27
17	Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode. Separation and Purification Technology, 2020, 236, 116301.	3.9	41
18	Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4. Applied Surface Science, 2020, 504, 144448.	3.1	42

JUNMIN ZHANG

#	Article	IF	CITATIONS
19	Photocatalyst- and transition-metal-free α-allylation of <i>N</i> -aryl tetrahydroisoquinolines mediated by visible light. Green Chemistry, 2020, 22, 646-650.	4.6	35
20	Highly efficient degradation of 2,2â€2,4,4′-tetrabromodiphenyl ether through combining surfactant-assisted ZnO reduction with subsequent Fenton oxidation. Journal of Hazardous Materials, 2020, 385, 121551.	6.5	8
21	Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution. Applied Surface Science, 2020, 506, 145004.	3.1	22
22	Sizeâ€Transformable Nanostructures: From Design to Biomedical Applications. Advanced Materials, 2020, 32, e2003752.	11.1	52
23	The Endocannabinoid System Contributes to Memory Deficits Induced by Rapid-eye-movement Sleep Deprivation in Adolescent Mice. Neuroscience, 2020, 433, 174-183.	1.1	11
24	Naphthalene imide dimer as interface engineering material: An efficient strategy for achieving high-performance perovskite solar cells. Chemical Engineering Journal, 2020, 395, 125062.	6.6	27
25	Tuning the N-bonded cerium(<scp>iii</scp>) fraction/g-C ₃ N ₄ interface in hollow structures using an <i>in situ</i> reduction treatment for superior photochemical hydrogen evolution. Catalysis Science and Technology, 2019, 9, 5322-5332.	2.1	16
26	Identification, Formation, and Predicted Toxicity of Halogenated DBPs Derived from Tannic Acid and Its Biodegradation Products. Environmental Science & Technology, 2019, 53, 13019-13030.	4.6	22
27	A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. Journal of Materials Chemistry A, 2019, 7, 2581-2588.	5.2	103
28	Enhanced photoelectrocatalytic breakdown of Cu-cyanide complexes and copper recovery using photoelectrogenerated free chlorine. Electrochemistry Communications, 2019, 100, 34-38.	2.3	11
29	Enhanced photoelectrocatalytic degradation of bisphenol A and simultaneous production of hydrogen peroxide in saline wastewater treatment. Chemosphere, 2019, 222, 141-148.	4.2	27
30	Unravelling the mechanistic role of Ti O C bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light. Journal of Colloid and Interface Science, 2019, 553, 409-417.	5.0	76
31	Water-soluble chiral tetrazine derivatives: towardsÂthe application of circularly polarized luminescence from upper-excited states to photodynamic therapy. Chemical Science, 2019, 10, 4163-4168.	3.7	19
32	Decomplexation removal of Ni(II)-citrate complexes through heterogeneous Fenton-like process using novel CuO-CeO2-CoOx composite nanocatalyst. Journal of Hazardous Materials, 2019, 374, 167-176.	6.5	46
33	Effective degradation of refractory nitrobenzene in water by the natural 4-hydroxycoumarin under solar illumination. Chemosphere, 2019, 215, 199-205.	4.2	10
34	Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials, 2018, 30, 1706054.	11.1	405
35	Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere, 2018, 195, 632-640.	4.2	178
36	A domain-based DNA circuit for smart single-nucleotide variant identification. Chemical Communications, 2018, 54, 1311-1314.	2.2	12

JUNMIN ZHANG

#	Article	IF	CITATIONS
37	A recyclable self-assembled composite catalyst consisting of Fe ₃ O ₄ -rose bengal-layered double hydroxides for highly efficient visible light photocatalysis in water. Chemical Communications, 2018, 54, 13587-13590.	2.2	29
38	Polydimethylsiloxane sponge supported DMAP on polymer brushes: Highly efficient recyclable base catalyst and ligand in water. Journal of Catalysis, 2018, 367, 264-268.	3.1	10
39	Organic Cotton Photocatalysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14759-14766.	3.2	27
40	Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging. Applied Physics Letters, 2018, 112, 211102.	1.5	20
41	Polydimethylsiloxane Sponge‣upported Nanometer Gold: Highly Efficient Recyclable Catalyst for Crossâ€Dehydrogenative Coupling in Water. ChemSusChem, 2018, 11, 3586-3590.	3.6	19
42	Chiral thiophene derivatives with optimal twoâ€photon absorption in nearâ€infrared window I and II. International Journal of Quantum Chemistry, 2018, 118, e25690.	1.0	2
43	Organic sponge photocatalysis. Green Chemistry, 2017, 19, 2925-2930.	4.6	57
44	Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp Journal of Hazardous Materials, 2017, 330, 127-134.	6.5	163
45	Bioinspired, Mechanoâ€Regulated Interfaces for Rationally Designed, Dynamically Controlled Collection of Oil Spills from Water. Global Challenges, 2017, 1, 1600014.	1.8	8
46	Hydrophilic Sponges for Leafâ€Inspired Continuous Pumping of Liquids. Advanced Science, 2017, 4, 1700028.	5.6	54
47	Elastic Sponges: Hydrophilic Sponges for Leafâ€Inspired Continuous Pumping of Liquids (Adv. Sci. 6/2017). Advanced Science, 2017, 4, .	5.6	1
48	Defect-free, high resolution patterning of liquid metals using reversibly sealed, reusable polydimethylsiloxane microchannels for flexible electronic applications. Journal of Materials Chemistry C, 2017, 5, 6790-6797.	2.7	47
49	A DNA kinetics competition strategy of hybridization chain reaction for molecular information processing circuit construction. Chemical Communications, 2017, 53, 1789-1792.	2.2	11
50	Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chemical Communications, 2017, 53, 12536-12539.	2.2	44
51	Spectroscopic studies of chiral perovskite nanocrystals. Applied Physics Letters, 2017, 111, .	1.5	77
52	High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry A, 2017, 5, 20044-20052.	5.2	108
53	Directed Aromatic C–H Activation/Acetoxylation Catalyzed by Pd Nanoparticles Supported on Graphene Oxide. Organic Letters, 2017, 19, 6470-6473.	2.4	26
54	Design and chiroptical properties of a water-soluble and violet-blue emissive alkyne template. Synthetic Metals, 2017, 234, 132-138.	2.1	3

JUNMIN ZHANG

#	Article	IF	CITATIONS
55	Microfluidic Patterning of Metal Structures for Flexible Conductors by In Situ Polymerâ€Assisted Electroless Deposition. Advanced Science, 2017, 4, 1600313.	5.6	41
56	Flexible Electronics: 3D Stretchable, Compressible, and Highly Conductive Metal oated Polydimethylsiloxane Sponges (Adv. Mater. Technol. 7/2016). Advanced Materials Technologies, 2016, 1, .	3.0	0
57	3D Stretchable, Compressible, and Highly Conductive Metalâ€Coated Polydimethylsiloxane Sponges. Advanced Materials Technologies, 2016, 1, 1600117.	3.0	71
58	Strong multiphoton absorption properties of one styrylpyridinium salt in a highly polar solvent. Optics Express, 2016, 24, 11091.	1.7	4
59	A Convenient Method to Prepare Pyrano[2,3- <i>d</i>]pyrimidine Derivatives. Chinese Journal of Organic Chemistry, 2016, 36, 659.	0.6	Ο
60	Catalytic Activation of Carbohydrates as Formaldehyde Equivalents for Stetter Reaction with Enones. Journal of the American Chemical Society, 2013, 135, 8113-8116.	6.6	112
61	Enantioselective Oxidative Crossâ€Đehydrogenative Coupling of Tertiary Amines to Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 3649-3652.	7.2	153
62	Facile Access to Chiral Ketones through Metalâ€Free Oxidative CC Bond Cleavage of Aldehydes by O ₂ . Angewandte Chemie - International Edition, 2012, 51, 1911-1914.	7.2	68
63	Asymmetric Organocatalytic Double-Conjugate Addition of Malononitrile to Dienones: Efficient Synthesis of Optically Active Cyclohexanones. Organic Letters, 2011, 13, 374-377.	2.4	90
64	BrÃ,nsted Acid Catalyzed αâ€Alkylation of Aldehydes with Diaryl Methyl Alcohols. Chemistry - A European Journal, 2011, 17, 12272-12275.	1.7	20
65	Asymmetric Synthesis of Nitrocyclopropanes Catalyzed by Chiral Primary Amines. Synlett, 2010, 2010, 266-270.	1.0	6
66	Bromonitromethane: A Versatile Reagent in Organic Synthesis. Synlett, 2009, 2009, 1692-1693.	1.0	3
67	Enantioselective conjugate addition of 1-bromonitroalkanes to α,β-unsaturated aldehydes catalyzed by chiral secondary amines. Tetrahedron: Asymmetry, 2009, 20, 355-361.	1.8	30
68	Organocatalytic conjugate addition of 1-bromonitroalkanes to α,β-unsaturated aldehydes: synthesis of nitrocyclopropanes. Tetrahedron, 2009, 65, 802-806.	1.0	20
69	Highly enantioselective conjugate addition of 1-bromonitroalkanes to α,β-unsaturated ketones catalyzed by 9-amino-9-deoxyepiquinine. Tetrahedron, 2009, 65, 4124-4129.	1.0	32
70	Highly Enantioselective Synthesis of Nitrocyclopropanes via Organocatalytic Conjugate Addition of Bromomalonate to $\hat{1}\pm,\hat{1}^2$ -Unsaturated Nitroalkenes. Organic Letters, 2009, 11, 1583-1586.	2.4	87
71	Ytterbium(III) Triflate as an Efficient Catalyst for the Synthesis of Perimidine Derivatives under Mild Conditions. Chinese Journal of Chemistry, 2008, 26, 185-189.	2.6	22
72	Bismuth(III) Chloride–Promoted Efficient Synthesis of Perimidine Derivatives under Ambient Conditions. Synthetic Communications, 2007, 37, 2615-2624.	1.1	23

#	Article	IF	CITATIONS
73	Ruthenium(III) chloride as an efficient catalyst for the synthesis of perimidine derivatives under mild conditions. Chinese Chemical Letters, 2007, 18, 1057-1060.	4.8	25
74	Imino Diels-Alder Reaction Catalyzed by Iodine: Efficient Synthesis of Tetrahydroquinolines. Chinese Journal of Chemistry, 2006, 24, 929-932.	2.6	22