
Virginia Saez-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9125688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanometric Hydroxyapatite Particles as Active Ingredient for Bioinks: A Review. Macromol, 2022, 2, 20-29.	4.4	2
2	Wound healing and antibacterial chitosan-genipin hydrogels with controlled drug delivery for synergistic anti-inflammatory activity. International Journal of Biological Macromolecules, 2022, 203, 679-694.	7.5	27
3	Self-healing, antibacterial and anti-inflammatory chitosan-PEG hydrogels for ulcerated skin wound healing and drug delivery. , 2022, 139, 212992.		15
4	The influence of structure and morphology on ion permeation in commercial silicone hydrogel contact lenses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 137-148.	3.4	4
5	Injectable Hydrogels: From Laboratory to Industrialization. Polymers, 2021, 13, 650.	4.5	83
6	Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. Materials Science and Engineering C, 2021, 125, 112102.	7.3	21
7	Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines, 2021, 9, 1113.	3.2	50
8	Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings, 2020, 10, 139.	2.6	71
9	Synthesis and Characterization of Covalently Crosslinked pH-Responsive Hyaluronic Acid Nanogels: Effect of Synthesis Parameters. Polymers, 2019, 11, 742.	4.5	29
10	Investigating the permeation properties of contact lenses and its influence on tear electrolyte composition. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1997-2005.	3.4	5
11	The potential influence of Schirmer strip variables on dry eye disease characterisation, and on tear collection and analysis. Contact Lens and Anterior Eye, 2018, 41, 47-53.	1.7	17
12	Sodium, potassium and calcium permeation through contact lenses. Contact Lens and Anterior Eye, 2018, 41, S64.	1.7	0
13	The influence of structure and morphology of commercial silicone hydrogel contact lenses on permeation. Contact Lens and Anterior Eye, 2018, 41, S66-S67.	1.7	Ο
14	Integrated 3D Hydrogel Waveguide Out-Coupler by Step-and-Repeat Thermal Nanoimprint Lithography: A Promising Sensor Device for Water and pH. Sensors, 2018, 18, 3240.	3.8	14
15	The effect of water structure on permeation in contact lenses. Contact Lens and Anterior Eye, 2018, 41, S65-S66.	1.7	0
16	Evaluation of commercial Schirmer strips for tear analysis studies. Contact Lens and Anterior Eye, 2018, 41, S12.	1.7	2
17	Nanocarrier-based contact lens coating for ocular delivery of phospholipids and hydrophobic drugs. Contact Lens and Anterior Eye, 2018, 41, S3.	1.7	0
18	The application of zeta potential measurements in contact lens research. Contact Lens and Anterior Eye, 2018, 41, S6.	1.7	1

#	Article	IF	CITATIONS
19	Polymer–lipid interactions: Biomimetic self-assembly behaviour and surface properties of poly(styrene-alt-maleic acid) with diacylphosphatidylcholines. Reactive and Functional Polymers, 2015, 94, 9-16.	4.1	6
20	New strategy to overcome the intrinsic difficulty of phospholipids solubilisation and delivery to the eye. Contact Lens and Anterior Eye, 2015, 38, e32.	1.7	0
21	Degradable poly(ethylene glycol)-based hydrogels: Synthesis, physico-chemical properties and in vitro characterization. Journal of Bioactive and Compatible Polymers, 2014, 29, 270-283.	2.1	4
22	Imprinted hydrogels for tunable hemispherical microlenses. Microelectronic Engineering, 2013, 111, 189-192.	2.4	6
23	Multifunctional bioactive glass scaffolds coated with layers of poly(d,l-lactide-co-glycolide) and poly(n-isopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin. Materials Science and Engineering C, 2013, 33, 3760-3767.	7.3	37
24	Fabrication and Characterization of Macroporous Poly(Ethylene Clycol) Hydrogels Generated by Several Types of Porogens. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 502-508.	3.4	12
25	Comparative study of dexamethasone and vancomycin release behavior from stimuli-sensitive microgel aqueous dispersions. Journal of Drug Delivery Science and Technology, 2012, 22, 313-316.	3.0	4
26	In Situ Mineralization by the Release of Calcium and Phosphate Ions from Nanogels. Advanced Science Letters, 2012, 16, 179-182.	0.2	0
27	New hybrid system: Poly(ethylene glycol) hydrogel with covalently bonded pegylated nanotubes. Journal of Applied Polymer Science, 2011, 120, 124-132.	2.6	15
28	Novel Bioactive Scaffolds Incorporating Nanogels as Potential Drug Eluting Devices. Journal of Nanoscience and Nanotechnology, 2010, 10, 2826-2832.	0.9	6
29	Nanopatterned UV curable hydrogels for biomedical applications. Microelectronic Engineering, 2010, 87, 1057-1061.	2.4	10
30	Specific pHâ€Responsive Folateâ€Conjugate Microgels Designed for Antitumor Therapy. Macromolecular Chemistry and Physics, 2009, 210, 467-477.	2.2	16
31	Novel pH―and Temperatureâ€Responsive Methacrylamide Microgels. Macromolecular Chemistry and Physics, 2009, 210, 1120-1126.	2.2	13
32	Decellularization of bovine corneas for tissue engineering applications. Acta Biomaterialia, 2009, 5, 1839-1847.	8.3	117
33	pH-Sensitive microgels functionalized with folic acid. European Polymer Journal, 2008, 44, 1309-1322.	5.4	24
34	Synthesis and characterization of pH-sensitive microgels by derivatization of npa-based reactive copolymers. Materials Chemistry and Physics, 2008, 112, 516-524.	4.0	11
35	Synthesis and characterization of reactive copolymeric microgels. Polymer International, 2005, 54, 963-971.	3.1	11