
Stefanie J Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9125584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. Plant Cell, 2022, 34, 1375-1395.	3.1	25
2	Glutathione contributes to plant defence against parasitic cyst nematodes. Molecular Plant Pathology, 2022, 23, 1048-1059.	2.0	8
3	Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants. Methods in Molecular Biology, 2022, , 65-85.	0.4	7
4	Endoplasmic reticulum oxidoreductin provides resilience against reductive stress and hypoxic conditions by mediating luminal redox dynamics. Plant Cell, 2022, 34, 4007-4027.	3.1	22
5	Chloroplast-derived photo-oxidative stress causes changes in H2O2 and <i>E</i> GSH in other subcellular compartments. Plant Physiology, 2021, 186, 125-141.	2.3	65
6	Live monitoring of plant redox and energy physiology with genetically encoded biosensors. Plant Physiology, 2021, 186, 93-109.	2.3	33
7	Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites. BMC Plant Biology, 2021, 21, 322.	1.6	17
8	A dual role for glutathione transferase U7 in plant growth and protection from methyl viologen-induced oxidative stress. Plant Physiology, 2021, 187, 2451-2468.	2.3	18
9	Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant Journal, 2020, 101, 420-441.	2.8	152
10	Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 741-751.	3.3	96
11	Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. Plant Journal, 2020, 103, 1140-1154.	2.8	47
12	It Started With a Kiss: Monitoring Organelle Interactions and Identifying Membrane Contact Site Components in Plants. Frontiers in Plant Science, 2020, 11, 517.	1.7	20
13	Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. New Phytologist, 2019, 224, 1569-1584.	3.5	57
14	Physcomitrella as a model system for plant cell biology and organelle–organelle communication. Current Opinion in Plant Biology, 2019, 52, 7-13.	3.5	6
15	Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit. PLoS ONE, 2019, 14, e0220589.	1.1	14
16	The fluorescent protein sensor ro <scp>GFP</scp> 2â€Orp1 monitors <i>inÂvivo</i> H ₂ O ₂ and thiol redox integration and elucidates intracellular H ₂ O ₂ dynamics during elicitorâ€induced oxidative burst in Arabidopsis. New Phytologist, 2019, 221, 1649-1664.	3.5	132
17	Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Scientific Reports, 2018, 8, 11165.	1.6	14
18	Glutathione peroxidaseâ€like enzymes cover five distinct cell compartments and membrane surfaces in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 1281-1295.	2.8	69

Stefanie J Müller

#	ARTICLE	IF	CITATIONS
19	Approaches to Characterize Organelle, Compartment, or Structure Purity. Methods in Molecular Biology, 2017, 1511, 13-28.	0.4	4
20	The mitochondrial proteome of the moss Physcomitrella patens. Mitochondrion, 2017, 33, 38-44.	1.6	5
21	Spatioâ€ŧemporal patterning of arginylâ€ <scp>tRNA</scp> protein transferase (<scp>ATE</scp>) contributes to gametophytic development in a moss. New Phytologist, 2016, 209, 1014-1027.	3.5	35
22	Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6779-6784.	3.3	60
23	Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens. Molecular and Cellular Proteomics, 2016, 15, 1808-1822.	2.5	25
24	Analysis of confocal microscopy image data of Physcomitrella chloroplasts to reveal adaptation principles leading to structural stability at the nanoscale. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 69-70.	0.2	4
25	Can mosses serve as model organisms for forest research?. Annals of Forest Science, 2016, 73, 135-146.	0.8	13
26	Analysis of Physcomitrella Chloroplasts to Reveal Adaptation Principles Leading to Structural Stability at the Nano-Scale. Biologically-inspired Systems, 2016, , 261-275.	0.4	6
27	Mitochondrial Dynamics and the ER: The Plant Perspective. Frontiers in Cell and Developmental Biology, 2015, 3, 78.	1.8	49
28	Evolution and communication of subcellular compartments. Plant Signaling and Behavior, 2014, 9, e28993.	1.2	10
29	Quantitative Analysis of the Mitochondrial and Plastid Proteomes of the Moss <i>Physcomitrella patens</i> Reveals Protein Macrocompartmentation and Microcompartmentation. Plant Physiology, 2014, 164, 2081-2095.	2.3	61
30	The relevance of compartmentation for cysteine synthesis in phototrophic organisms. Protoplasma, 2012, 249, 147-155.	1.0	22
31	Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. Plant Cell Reports, 2011, 30, 205-215.	2.8	53