

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9125572/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dose to pelvic lymph nodes during brachytherapy of locally advanced cervical cancer with 60Co HDR source. Brachytherapy, 2022, 21, 158-169.                                                                                        | 0.5 | 3         |
| 2  | Dose to pelvic lymph nodes in locally advanced cervical cancer during high-dose-rate brachytherapy with tandem-ring applicators. Journal of Contemporary Brachytherapy, 2022, 14, 183-188.                                         | 0.9 | 1         |
| 3  | An in silico study on the effect of host tissue at brachytherapy dose enhancement by gold nanoparticles. Brachytherapy, 2021, 20, 420-425.                                                                                         | 0.5 | 1         |
| 4  | Manufacturing and evaluation of multi-channel cylinder applicator with 3D printing technology.<br>Journal of Contemporary Brachytherapy, 2021, 13, 80-90.                                                                          | 0.9 | 8         |
| 5  | Efficacy and complications of ruthenium-106 brachytherapy for uveal melanoma: a systematic review and meta-analysis. Journal of Contemporary Brachytherapy, 2021, 13, 358-364.                                                     | 0.9 | 17        |
| 6  | A rapid review of influential factors and appraised solutions on organ delineation uncertainties reduction in radiotherapy. Biomedical Physics and Engineering Express, 2021, 7, 052001.                                           | 1.2 | 3         |
| 7  | Radiotherapy based management during Covid-19 pandemic – A systematic review of presented consensus and guidelines. Critical Reviews in Oncology/Hematology, 2021, 164, 103402.                                                    | 4.4 | 15        |
| 8  | Clinical and Imaging Characteristics of Cancer Patients with COVID-19: A Pilot Study. International<br>Journal of Cancer Management, 2021, 14, .                                                                                   | 0.4 | 0         |
| 9  | Correlation between gastric volume and organs at risk dose in adjuvant radiotherapy for left breast cancer. Reports of Practical Oncology and Radiotherapy, 2021, 26, 367-379.                                                     | 0.6 | 0         |
| 10 | Correlation between gastric volume and organs at risk dose in adjuvant radiotherapy for left breast cancer. Reports of Practical Oncology and Radiotherapy, 2021, 26, 367-379.                                                     | 0.6 | 1         |
| 11 | Recommendations on Management of Locally Advanced Rectal Cancer During the COVID-19 Pandemic:<br>an Iranian Consensus. Journal of Gastrointestinal Cancer, 2020, 51, 800-804.                                                      | 1.3 | 17        |
| 12 | Evaluating the radiation contamination dose around a high dose per pulse intraoperative<br>radiotherapy accelerator: a Monte Carlo study. Journal of Radiotherapy in Practice, 2020, 19, 265-276.                                  | 0.5 | 5         |
| 13 | Evaluation of deformable image registration algorithm for determination of accumulated dose for brachytherapy of cervical cancer patients. Journal of Contemporary Brachytherapy, 2019, 11, 469-478.                               | 0.9 | 15        |
| 14 | PO-0935: Modeling to compensate for intra-fractional bladder dose variations in gynecological brachytherapy. Radiotherapy and Oncology, 2017, 123, S517-S518.                                                                      | 0.6 | 0         |
| 15 | EP-1187: Heart dose evaluation in two free-breathing and deep-breathing modes of breast cancer patients. Radiotherapy and Oncology, 2017, 123, S643.                                                                               | 0.6 | 0         |
| 16 | Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment<br>planning correction of intra-fractional organs at risk dose variation. Journal of Contemporary<br>Brachytherapy, 2017, 9, 508-518. | 0.9 | 7         |
| 17 | Optimum organ volume ranges for organs at risk dose in cervical cancer intracavitary brachytherapy.<br>Journal of Contemporary Brachytherapy, 2016, 2, 135-142.                                                                    | 0.9 | 22        |
| 18 | A comparison of organs at risk doses in GYN intracavitary brachytherapy for different tandem lengths<br>and bladder volumes. Journal of Applied Clinical Medical Physics, 2016, 17, 5-13.                                          | 1.9 | 6         |

Zahra

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evaluating the utility of "3D Slicer―as a fast and independent toolÂtoÂassess intrafractional organ<br>dose variations in gynecologicalÂbrachytherapy. Brachytherapy, 2016, 15, 514-523. | 0.5 | 13        |
| 20 | Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room. Radiation Protection Dosimetry, 2013, 156, 356-363.                                   | 0.8 | 8         |
| 21 | Developing a Treatment Planning Software Based on TG-43U1 Formalism for Cs-137 LDR Brachytherapy.<br>Iranian Red Crescent Medical Journal, 2013, 15, 712-717.                            | 0.5 | 3         |
| 22 | Radiation Protection Principles Observance in Mammography Divisions in Shiraz. Iranian Red Crescent<br>Medical Journal, 2012, 14, 840-1.                                                 | 0.5 | 0         |
| 23 | SU-E-T-705: The Effects of Applicator Displacement on Dose Distribution around Cs-137 Brachytherapy Sources. Medical Physics, 2011, 38, 3652-3652.                                       | 3.0 | 0         |
| 24 | SU-E-T-714: Developing a TG-43U1 Based Dose Calculation Treatment Planning Software for Cs-137 LDR<br>Brachytherapy. Medical Physics, 2011, 38, 3654-3654.                               | 3.0 | 0         |