
## Lishan Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9125295/publications.pdf Version: 2024-02-01



LISHAN DENC

| #  | Article                                                                                                                                                                                                                                                       | IF          | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Materials, 2022, 45, 301-322.                                                                                                                                 | 9.5         | 67        |
| 2  | Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews, 2022, 454, 214339.                                                                                 | 9.5         | 71        |
| 3  | Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance. Science Bulletin, 2022, 67, 1264-1273.                                                                                                           | 4.3         | 36        |
| 4  | Mesoporeâ€Rich Fe–N–C Catalyst with FeN <sub>4</sub> –O–NC Singleâ€Atom Sites Delivers Remarkal<br>Oxygen Reduction Reaction Performance in Alkaline Media. Advanced Materials, 2022, 34, e2202544.                                                           | ole<br>11.1 | 168       |
| 5  | Constructing Ni-VN interfaces with superior electrocatalytic activity for alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 626, 486-493.                                                                                 | 5.0         | 3         |
| 6  | Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction. Chinese Journal of Catalysis, 2022, 43, 2193-2201.                                                                                    | 6.9         | 23        |
| 7  | Insight into the boosted activity of TiO2–CoP composites for hydrogen evolution reaction:<br>Accelerated mass transfer, optimized interfacial water, and promoted intrinsic activity. Journal of<br>Energy Chemistry, 2022, 74, 111-120.                      | 7.1         | 10        |
| 8  | Molten NaClâ€Assisted Synthesis of Porous Feâ€Nâ€C Electrocatalysts with a High Density of Catalytically<br>Accessible FeN <sub>4</sub> ÂActive Sites and Outstanding Oxygen Reduction Reaction Performance.<br>Advanced Energy Materials, 2021, 11, 2100219. | 10.2        | 160       |
| 9  | MILâ€101â€Derived Mesoporous Carbon Supporting Highly Exposed Fe Singleâ€Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. Advanced Materials, 2021, 33, e2101038.                                                                                 | 11.1        | 327       |
| 10 | Rationally Designed Ni–Ni <sub>3</sub> S <sub>2</sub> Interfaces for Efficient Overall Water<br>Electrolysis. Advanced Energy and Sustainability Research, 2021, 2, 2100078.                                                                                  | 2.8         | 40        |
| 11 | Atomic Cationâ€Vacancy Engineering of NiFeâ€Layered Double Hydroxides for Improved Activity and<br>Stability towards the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 24817-24824.                                                                | 1.6         | 39        |
| 12 | Atomic Cationâ€Vacancy Engineering of NiFe‣ayered Double Hydroxides for Improved Activity and<br>Stability towards the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60,<br>24612-24619.                                        | 7.2         | 259       |
| 13 | A framework ensemble facilitates high Pt utilization in a low Pt loading fuel cell. Catalysis Science and Technology, 2021, 11, 2957-2963.                                                                                                                    | 2.1         | 10        |
| 14 | Improved hydrogen oxidation reaction under alkaline conditions by Au–Pt alloy nanoparticles.<br>Journal of Energy Chemistry, 2020, 40, 52-56.                                                                                                                 | 7.1         | 25        |
| 15 | Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology, 2020, 48, 19-33.                                                                                                                         | 2.0         | 12        |
| 16 | Boosting Hydrogen Evolution Reaction of Nickel Sulfides by Introducing Nonmetallic Dopants.<br>Journal of Physical Chemistry C, 2020, 124, 24223-24231.                                                                                                       | 1.5         | 8         |
| 17 | Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and<br>Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.                                                                                             | 10.2        | 181       |
| 18 | Amorphous FeO <sub>x</sub> ( <i>x</i> = 1, 1.5) coated Cu <sub>3</sub> P nanosheets with bamboo<br>leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts.<br>Journal of Materials Chemistry A, 2020, 8, 3351-3356.    | 5.2         | 17        |

Lishan Peng

| #  | Article                                                                                                                                                                                                                 | IF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 19 | Accelerated alkaline hydrogen evolution on M(OH) <sub>x</sub> /M-MoPO <sub>x</sub> (M = Ni, Co, Fe,) Tj ETQq<br>Science, 2020, 11, 2487-2493.                                                                           | 1 1 0.784<br>3.7 | 314 rgBT /(<br>54 |
| 20 | ZnCl2 salt facilitated preparation of FeNC: Enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction. Chinese Journal of Catalysis, 2020, 41, 799-806.                 | 6.9              | 24                |
| 21 | Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water<br>Electrolysis and the Hydrogen Fuel Cell. Engineering, 2020, 6, 653-679.                                                        | 3.2              | 75                |
| 22 | Heteroatom Modification of Nanoporous Nickel Surfaces for Electrocatalytic Water Splitting. ACS<br>Applied Nano Materials, 2020, 3, 11298-11306.                                                                        | 2.4              | 11                |
| 23 | Frontispiece: Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry - A<br>European Journal, 2019, 25, .                                                                                  | 1.7              | 1                 |
| 24 | Self-standing FeCo Prussian blue analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting. Electrochimica Acta, 2019, 302, 45-55.                                       | 2.6              | 80                |
| 25 | Rational construction of macroporous CoFeP triangular plate arrays from bimetal–organic<br>frameworks as high-performance overall water-splitting catalysts. Journal of Materials Chemistry A,<br>2019, 7, 17529-17535. | 5.2              | 102               |
| 26 | Enhancing Rate Performances of Carbon Based Supercapacitors. ChemistrySelect, 2019, 4, 6827-6832.                                                                                                                       | 0.7              | 7                 |
| 27 | Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions. Science Bulletin, 2019, 64, 1095-1102.                             | 4.3              | 59                |
| 28 | Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry - A European<br>Journal, 2019, 25, 9799-9815.                                                                                       | 1.7              | 41                |
| 29 | Inert V <sub>2</sub> O <sub>3</sub> oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution. Chemical Communications, 2019, 55, 3290-3293.                                             | 2.2              | 30                |
| 30 | Synthesis of ammonia <i>via</i> electrochemical nitrogen reduction on high-index faceted Au<br>nanoparticles with a high faradaic efficiency. Chemical Communications, 2019, 55, 14482-14485.                           | 2.2              | 52                |
| 31 | Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 245, 122-129.                                                    | 10.8             | 132               |
| 32 | Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts<br>for overall water splitting. Journal of Catalysis, 2019, 369, 345-351.                                              | 3.1              | 84                |
| 33 | Three-dimensional Core@Shell Co@CoMoO4 nanowire arrays as efficient alkaline hydrogen evolution electro-catalysts. Applied Catalysis B: Environmental, 2019, 246, 41-49.                                                | 10.8             | 78                |
| 34 | Design and synthesis of conductive carbon polyhedrons enriched with Mn-Oxide active-centres for oxygen reduction reaction. Electrochimica Acta, 2018, 272, 169-175.                                                     | 2.6              | 47                |
| 35 | Carbon-based catalysts by structural manipulation with iron for oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8405-8412.                                                                        | 5.2              | 38                |
| 36 | Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction. Chemical Science, 2018, 9, 1822-1830.                                                         | 3.7              | 46                |

LISHAN PENG

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preparation of Hollow Nitrogen Doped Carbon via Stresses Induced Orientation Contraction. Small, 2018, 14, e1804183.                                                                                                                                                        | 5.2 | 83        |
| 38 | Hierarchical coral-like FeNi(OH) /Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting. Chinese Journal of Catalysis, 2018, 39, 1736-1745.                                                                                      | 6.9 | 34        |
| 39 | Formation of a thin-layer of nickel hydroxide on nickel phosphide nanopillars for hydrogen evolution. Electrochemistry Communications, 2018, 92, 9-13.                                                                                                                      | 2.3 | 27        |
| 40 | Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction.<br>Chinese Journal of Catalysis, 2018, 39, 1575-1593.                                                                                                                    | 6.9 | 205       |
| 41 | Exploring Feâ€N <sub><i>x</i></sub> for Peroxide Reduction: Templateâ€Free Synthesis of<br>Feâ€N <sub><i>x</i></sub> Traumatized Mesoporous Carbon Nanotubes as an ORR Catalyst in Acidic and<br>Alkaline Solutions. Chemistry - A European Journal, 2018, 24, 10630-10635. | 1.7 | 79        |
| 42 | Selfâ€assembly―and Preshapingâ€assisted Synthesis of Molybdenum Carbide Supported on Ultrathin<br>Nitrogenâ€doped Graphitic Carbon Lamellas for the Hydrogen Evolution Reaction. ChemCatChem, 2017,<br>9, 1588-1593.                                                        | 1.8 | 34        |
| 43 | Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced<br>electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions. Journal of<br>Materials Chemistry A, 2017, 5, 23028-23034.                                | 5.2 | 65        |
| 44 | Dual-Ligand Synergistic Modulation: A Satisfactory Strategy for Simultaneously Improving the Activity and Stability of Oxygen Evolution Electrocatalysts. ACS Catalysis, 2017, 7, 8184-8191.                                                                                | 5.5 | 109       |
| 45 | Monodispersed Co in Mesoporous Polyhedrons: Fine-tuning of ZIF-8 Structure with Enhanced Oxygen<br>Reduction Activity. Electrochimica Acta, 2017, 251, 498-504.                                                                                                             | 2.6 | 91        |
| 46 | Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chemical Communications, 2017, 53, 11426-11429.                                                  | 2.2 | 32        |
| 47 | In situ growth of RuO2–TiO2 catalyst with flower-like morphologies on the Ti substrate as a<br>binder-free integrated anode for chlorine evolution. Journal of Applied Electrochemistry, 2016, 46,<br>841-849.                                                              | 1.5 | 27        |
| 48 | Ni-doped Mo <sub>2</sub> C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. Journal of Materials Chemistry A, 2015, 3, 1863-1867.                                                                                | 5.2 | 234       |
| 49 | Oxygen-Incorporated NiMoP <sub>2</sub> Nanowire Arrays for Enhanced Hydrogen Evolution Activity<br>in Alkaline Solution. ACS Applied Energy Materials, 0, , .                                                                                                               | 2.5 | 6         |