
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9125102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Graphene vs. Reduced Graphene Oxide in Gold Nanoparticles for Optical Biosensors—A Comparative Study. Biosensors, 2022, 12, 163.	4.7	10
2	Polyaromatic Carboxylate Ligands Based Zn(II) Coordination Polymers for Ultrasound-Assisted One-Pot Tandem Deacetalization–Knoevenagel Reactions. Catalysts, 2022, 12, 294.	3.5	4
3	Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. Biosensors, 2022, 12, 225.	4.7	14
4	Ultrasound and photo-assisted oxidation of toluene and benzyl alcohol with oxidovanadium(V) complexes. Applied Catalysis A: General, 2022, 638, 118623.	4.3	7
5	Benzimidazole Schiff base copper(II) complexes as catalysts for environmental and energy applications: VOC oxidation, oxygen reduction and water splitting reactions. International Journal of Hydrogen Energy, 2022, 47, 23175-23190.	7.1	8
6	Hybrid Nanocomposites of Plasmonic Metal Nanostructures and 2D Nanomaterials for Improved Colorimetric Detection. Chemosensors, 2022, 10, 237.	3.6	5
7	Vanadium(V) complexes supported on porous MIL-100(Fe) as catalysts for the selective oxidation of toluene. Microporous and Mesoporous Materials, 2022, 341, 112091.	4.4	4
8	Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass and Bioenergy, 2021, 145, 105936.	5.7	16
9	Catalytic oxidation of a model volatile organic compound (toluene) with tetranuclear Cu(II) complexes. Inorganica Chimica Acta, 2021, 520, 120314.	2.4	8
10	Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2021, 320, 111111.	4.4	7
11	ZnO nanoparticles: An efficient catalyst for transesterification reaction of α-keto carboxylic esters. Catalysis Today, 2020, 348, 72-79.	4.4	11
12	Characterization of AuNPs+rGO as a functionalized layer for LSPR sensors. Materials Letters: X, 2020, 5, 100032.	0.7	0
13	C-scorpionate Au(III) complexes as pre-catalysts for industrially significant toluene oxidation and benzaldehyde esterification reactions. Inorganica Chimica Acta, 2020, 512, 119881.	2.4	9
14	Mechanochemical Preparation of Pd(II) and Pt(II) Composites with Carbonaceous Materials and Their Application in the Suzuki-Miyaura Reaction at Several Energy Inputs. Molecules, 2020, 25, 2951.	3.8	5
15	Fe(III) Complexes in Cyclohexane Oxidation: Comparison of Catalytic Activities under Different Energy Stimuli. Catalysts, 2020, 10, 1175.	3.5	4
16	Green synthesis of zinc oxide particles with apple-derived compounds and their application as catalysts in the transesterification of methyl benzoates. Dalton Transactions, 2020, 49, 6488-6494.	3.3	7
17	Cd(<scp>ii</scp>) coordination compounds as heterogeneous catalysts for microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol. New Journal of Chemistry, 2020, 44, 9163-9171.	2.8	18
18	1D Copper(II)-Aroylhydrazone Coordination Polymers: Magnetic Properties and Microwave Assisted Oxidation of a Secondary Alcohol. Frontiers in Chemistry, 2020, 8, 157.	3.6	21

#	Article	IF	CITATIONS
19	Ultrasound and Radiation-Induced Catalytic Oxidation of 1-Phenylethanol to Acetophenone with Iron-Containing Particulate Catalysts. Molecules, 2020, 25, 740.	3.8	5
20	Cu(<scp>ii</scp>) complexes of N-rich aroylhydrazone: magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Transactions, 2019, 48, 12839-12849.	3.3	19
21	Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers. Journal of Inorganic Biochemistry, 2019, 200, 110811.	3.5	15
22	A copper-amidocarboxylate based metal organic macrocycle and framework: synthesis, structure and catalytic activities towards microwave assisted alcohol oxidation and Knoevenagel reactions. New Journal of Chemistry, 2019, 43, 9843-9854.	2.8	16
23	Synthesis and Structure of Copper Complexes of a N6O4 Macrocyclic Ligand and Catalytic Application in Alcohol Oxidation. Catalysts, 2019, 9, 424.	3.5	15
24	Plasmonic properties of gold nanospheres coupled to reduced graphene oxide for biosensing applications *. , 2019, , .		3
25	C-scorpionate iron(II) complexes as highly selective catalysts for the hydrocarboxylation of cyclohexane. Inorganica Chimica Acta, 2019, 489, 269-274.	2.4	6
26	Synergistic catalytic action of vanadia–titania composites towards the microwave-assisted benzoin oxidation. Dalton Transactions, 2019, 48, 3198-3203.	3.3	7
27	Characterization of Plasmonic Effects in AuNP+rGO Composite as a Sensing Layer for a Low-cost Lab-on-chip Biosensor. , 2019, , .		1
28	Mechanochemical Activation and Catalysis. RSC Catalysis Series, 2019, , 548-563.	0.1	2
29	Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles. Biomedicine and Pharmacotherapy, 2018, 101, 137-144.	5.6	42
30	Copper(II) complexes with an arylhydrazone of methyl 2-cyanoacetate as effective catalysts in the microwave-assisted oxidation of cyclohexane. Inorganica Chimica Acta, 2018, 471, 658-663.	2.4	15
31	A Simulation Study of Surface Plasmons in Metallic Nanoparticles: Dependence on the Properties of an Embedding aâ€5i:H Matrix. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700487.	1.8	8
32	Copper(II) Complexes of Arylhydrazone of 1H-Indene-1,3(2H)-dione as Catalysts for the Oxidation of Cyclohexane in Ionic Liquids. Catalysts, 2018, 8, 636.	3.5	3
33	Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide. Molecules, 2018, 23, 2699.	3.8	23
34	Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications. Optical and Quantum Electronics, 2018, 50, 1.	3.3	7
35	Comparison of microwave and mechanochemical energy inputs in the catalytic oxidation of cyclohexane. Dalton Transactions, 2018, 47, 8193-8198.	3.3	9
36	Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds. Nanomaterials, 2018, 8, 320.	4.1	66

#	Article	IF	CITATIONS
37	Efficient Solventâ€Free Friedelâ€Crafts Benzoylation and Acylation of <i>m</i> â€Xylene Catalyzed by <i>N</i> â€Acetylpyrazineâ€2â€carbohydrazideâ€Fe(III)â€chloro Complexes. ChemistrySelect, 2018, 3, 8349-83	55 ^{1.5}	3
38	New Trendy Magnetic C-Scorpionate Iron Catalyst and Its Performance towards Cyclohexane Oxidation. Catalysts, 2018, 8, 69.	3.5	15
39	Highly Active and Selective Supported Rhenium Catalysts for Aerobic Oxidation of n-Hexane and n-Heptane. Catalysts, 2018, 8, 114.	3.5	4
40	Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation. , 2018, , .		1
41	Ball milling as an effective method to prepare magnetically recoverable heterometallic catalysts for alcohol oxidation. Inorganica Chimica Acta, 2017, 455, 653-658.	2.4	6
42	The influence of multiwalled carbon nanotubes and graphene oxide additives on the catalytic activity of 3d metal catalysts towards 1-phenylethanol oxidation. Journal of Molecular Catalysis A, 2017, 426, 557-563.	4.8	13
43	Arylhydrazone Cd(II) and Cu(II) complexes as catalysts for secondary alcohol oxidation. Polyhedron, 2017, 129, 182-188.	2.2	17
44	Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu(II) complexes. Molecular Catalysis, 2017, 439, 224-232.	2.0	40
45	Simple solvent-free preparation of dispersed composites and their application as catalysts in oxidation and hydrocarboxylation of cyclohexane. Materials Today Chemistry, 2017, 5, 52-62.	3.5	10
46	Liquid phase oxidation of xylenes catalyzed by the tripodal C-scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}]. Polyhedron, 2017, 125, 151-155.	2.2	14
47	A new member of Cu II 8 family: Synthesis, structure and magnetic properties of an octanuclear copper complex with N -tert -butyldiethanolamine. Inorganica Chimica Acta, 2017, 460, 83-88.	2.4	8
48	Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, Ionic Liquid and/or Supercritical CO2 Media: A Comparative Study. Catalysts, 2017, 7, 230.	3.5	18
49	Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon. , 2017, , .		2
50	Aroylhydrazone Cu(II) Complexes in keto Form: Structural Characterization and Catalytic Activity towards Cyclohexane Oxidation. Molecules, 2016, 21, 425.	3.8	31
51	Mono-alkylation of cyanoimide at a molybdenum(IV) diphosphinic center by alkyl halides: synthesis, cathodically induced isomerization and theoretical studies. Electrochimica Acta, 2016, 218, 252-262.	5.2	4
52	New copper(II) tetramer with arylhydrazone of barbituric acid and its catalytic activity in the oxidation of cyclic C5–C8 alkanes. Polyhedron, 2016, 117, 666-671.	2.2	12
53	Copper(II) and cobalt(II) tetrazole-saccharinate complexes as effective catalysts for oxidation of secondary alcohols. Journal of Molecular Catalysis A, 2016, 425, 283-290.	4.8	39
54	Metal Azolate/Carboxylate Frameworks as Catalysts in Oxidative and C–C Coupling Reactions. Inorganic Chemistry, 2016, 55, 5804-5817.	4.0	20

#	Article	IF	CITATIONS
55	Iron(<scp>iii</scp>) and cobalt(<scp>iii</scp>) complexes with both tautomeric (keto and enol) forms of aroylhydrazone ligands: catalysts for the microwave assisted oxidation of alcohols. RSC Advances, 2016, 6, 8079-8088.	3.6	50
56	Catalytic activity of a benzoyl hydrazone based dimeric dicopper(II) complex in catechol and alcohol oxidation reactions. Inorganica Chimica Acta, 2015, 431, 139-144.	2.4	17
57	Catalytic Oxidation of Alcohols. Advances in Organometallic Chemistry, 2015, , 91-174.	1.0	142
58	Novel Coordination Polymers with (Pyrazolato)-Based Tectons: Catalytic Activity in the Peroxidative Oxidation of Alcohols and Cyclohexane. Crystal Growth and Design, 2015, 15, 2303-2317.	3.0	57
59	Electrochemical Properties of Robson Type Macrocyclic Dicopper(II) Complexes. Portugaliae Electrochimica Acta, 2015, 33, 201-207.	1.1	1
60	The solvation and electrochemical behavior of copper acetylacetonate complexes in ionic liquids. Journal of Molecular Structure, 2014, 1060, 142-149.	3.6	17
61	Homo- and heteropolymetallic 3-(2-pyridyl)pyrazolate manganese and rhenium complexes. Dalton Transactions, 2014, 43, 4009-4020.	3.3	13
62	μâ€Chloridoâ€Bridged Dimanganese(II) Complexes of the Schiff Base Derived from [2+2] Condensation of 2,6â€Diformylâ€4â€methylphenol and 1,3â€Bis(3â€aminopropyl)tetramethyldisiloxane: Structure, Magnetism, Electrochemical Behaviour, and Catalytic Oxidation of Secondary Alcohols. European Journal of Inorganic Chemistry, 2014, 2014, 120-131.	2.0	48
63	Synthesis and characterization of copper(<scp>ii</scp>) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols. Dalton Transactions, 2014, 43, 4048-4058.	3.3	97
64	Dinuclear Mn(ii,ii) complexes: magnetic properties and microwave assisted oxidation of alcohols. Dalton Transactions, 2014, 43, 3966.	3.3	65
65	New Ru ^{II} (arene) Complexes with Halogenâ€Substituted Bis―and Tris(pyrazolâ€1â€yl)borate Ligands. Chemistry - A European Journal, 2014, 20, 3689-3704.	3.3	19
66	Tetranuclear Copper(II) Complexes with Macrocyclic and Open hain Disiloxane Ligands as Catalyst Precursors for Hydrocarboxylation and Oxidation of Alkanes and 1â€Phenylethanol. European Journal of Inorganic Chemistry, 2014, 2014, 4946-4956.	2.0	35
67	The solvation and redox behavior of mixed ligand copper(II) complexes of acetylacetonate and aromatic diimines in ionic liquids. Inorganica Chimica Acta, 2014, 409, 465-471.	2.4	5
68	Electrochemical Properties of (h5-C5Me5)–Rhodium and –Iridium Complexes Containing Bis(pyrazolyl)alkane Ligands. Portugaliae Electrochimica Acta, 2014, 32, 253-257.	1.1	2
69	Hexanuclear and undecanuclear iron(iii) carboxylates as catalyst precursors for cyclohexane oxidation. Dalton Transactions, 2013, 42, 14388.	3.3	29
70	Effect of 1,10-phenanthroline on DNA binding, DNA cleavage, cytotoxic and lactate dehydrogenase inhibition properties of Robson type macrocyclic dicopper(II) complex. Journal of Coordination Chemistry, 2013, 66, 3989-4003.	2.2	26
71	Oxorhenium Complexes Bearing the Water-Soluble Tris(pyrazol-1-yl)methanesulfonate, 1,3,5-Triaza-7-phosphaadamantane, or Related Ligands, as Catalysts for Baeyer–Villiger Oxidation of Ketones. Inorganic Chemistry, 2013, 52, 4534-4546.	4.0	51
72	Efficient cyclohexane oxidation with hydrogen peroxide catalysed by a C-scorpionate iron(II) complex immobilized on desilicated MOR zeolite. Applied Catalysis A: General, 2013, 464-465, 43-50.	4.3	66

#	Article	IF	CITATIONS
73	Redox-active cytotoxic diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes: Reduction behaviour and theoretical interpretation. Journal of Inorganic Biochemistry, 2012, 117, 147-156.	3.5	17
74	Acylated cyanoimido-complexes trans-[Mo(NCN){NCNC(O)R}(dppe)2]Cl and their reactions with electrophiles: chemical, electrochemical and theoretical study. Dalton Transactions, 2012, 41, 13876.	3.3	3
75	Baeyer–Villiger oxidation of ketones catalysed by rhenium complexes bearing N- or oxo-ligands. Applied Catalysis A: General, 2012, 443-444, 27-32.	4.3	29
76	Molybdenum- and tungsten(ii) monometallic 3-(2-pyridyl)pyrazole and bimetallic 3-(2-pyridyl)pyrazolate complexes. Dalton Transactions, 2012, 41, 7017.	3.3	13
77	Syntheses, Molecular Structures, Electrochemical Behavior, Theoretical Study, and Antitumor Activities of Organotin(IV) Complexes Containing 1-(4-Chlorophenyl)-1-cyclopentanecarboxylato Ligands. Inorganic Chemistry, 2011, 50, 8158-8167.	4.0	89
78	Molybdenum Complexes Bearing the Tris(1â€pyrazolyl)methanesulfonate Ligand: Synthesis, Characterization and Electrochemical Behaviour. European Journal of Inorganic Chemistry, 2010, 2010, 2415-2424.	2.0	31
79	Synthesis, characterization and redox behaviour of benzoyldiazenido- and oxorhenium complexes bearing N,N- and S,S-type ligands. Inorganica Chimica Acta, 2010, 363, 1269-1274.	2.4	6
80	Halfâ€Sandwich Scorpionate Vanadium, Iron and Copper Complexes: Synthesis and Application in the Catalytic Peroxidative Oxidation of Cyclohexane under Mild Conditions. Advanced Synthesis and Catalysis, 2008, 350, 706-716.	4.3	131
81	Cyclohexane oxidation with dioxygen catalyzed by supported pyrazole rhenium complexes. Journal of Molecular Catalysis A, 2008, 285, 92-100.	4.8	60
82	Pyrazole and trispyrazolylmethane rhenium complexes as catalysts for ethane and cyclohexane oxidations. Applied Catalysis A: General, 2007, 317, 43-52.	4.3	65
83	Rhenium complexes of tris(pyrazolyl)methanes and sulfonate derivative. Dalton Transactions, 2006, , 4954.	3.3	45
84	Syntheses and properties of Re(III) complexes derived from hydrotris(1-pyrazolyl)methanes: molecular structure of [ReCl2(HCpz3)(PPh3)][BF4]. Journal of Organometallic Chemistry, 2005, 690, 1947-1958.	1.8	42
85	Comparative Electrochemical Behaviour of the Complexes trans-[Mo(NCN){NCNC(O)R}(dppe)2]Cl (R =) Tj ETQq1	1 0.7843 1.1	14 rgBT /O
86	Syntheses and properties of hydride–cyanamide and derived hydrogen-cyanamide complexes of molybdenum(iv). Crystal structure of [MoH2(NCNH2)2(Ph2PCH2CH2PPh2)2][BF4]2. Dalton Transactions, 2003, , 3743-3750.	3.3	13