Jerry Ståhlberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9124986/publications.pdf

Version: 2024-02-01

61984 64796 7,160 81 43 79 citations h-index g-index papers 82 82 82 5127 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Glucomannan and beta-glucan degradation by Mytilus edulis Cel45A: Crystal structure and activity comparison with GH45 subfamily A, B and C. Carbohydrate Polymers, 2022, 277, 118771.	10.2	3
2	Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. Journal of Biological Chemistry, 2021, 297, 100931.	3.4	13
3	Reply to Cosgrove: Non-enzymatic action of expansins. Journal of Biological Chemistry, 2020, 295, 6783.	3.4	O
4	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
5	The hydrolysis mechanism of a GH45 cellulase and its potential relation to lytic transglycosylase and expansin function. Journal of Biological Chemistry, 2020, 295, 4477-4487.	3.4	16
6	Antibacterial pyrrolidinyl and piperidinyl substituted 2,4-diacetylphloroglucinols from Pseudomonas protegens UP46. Journal of Antibiotics, 2020, 73, 739-747.	2.0	3
7	The dissociation mechanism of processive cellulases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23061-23067.	7.1	40
8	Advantages of a distant cellulase catalytic base. Journal of Biological Chemistry, 2018, 293, 4680-4687.	3.4	5
9	Enantioselective Binding of Propranolol and Analogues Thereof to Cellobiohydrolase Cel7A. Chemistry - A European Journal, 2018, 24, 17975-17985.	3.3	5
10	Side-by-side biochemical comparison of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare on their activity against crystalline cellulose and glucomannan. PLoS ONE, 2018, 13, e0203430.	2 . 5	7
11	Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum. Biotechnology for Biofuels, 2018, 11, 5.	6.2	37
12	Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 2017, 246, 16-23.	3.8	59
13	Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. Journal of Biological Chemistry, 2017, 292, 17418-17430.	3.4	52
14	Biochemical and Structural Characterizations of Two Dictyostelium Cellobiohydrolases from the Amoebozoa Kingdom Reveal a High Level of Conservation between Distant Phylogenetic Trees of Life. Applied and Environmental Microbiology, 2016, 82, 3395-3409.	3.1	13
15	Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Chemical Science, 2016, 7, 5955-5968.	7.4	27
16	Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from <i>Geotrichum candidum</i> 3C. FEBS Journal, 2015, 282, 4515-4537.	4.7	37
17	Structural insights into the inhibition of cellobiohydrolase Cel7A by xyloâ€oligosaccharides. FEBS Journal, 2015, 282, 2167-2177.	4.7	25
18	Fungal Cellulases. Chemical Reviews, 2015, 115, 1308-1448.	47.7	673

#	Article	IF	Citations
19	Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 149-154.	7.1	210
20	Adaptation of <i>Dekkera bruxellensis</i> to lignocelluloseâ€based substrate. Biotechnology and Applied Biochemistry, 2014, 61, 51-57.	3.1	17
21	Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus <i>Humicola grisea </i> var. <i>thermoidea </i> Biological Crystallography, 2014, 70, 2356-2366.	2.5	26
22	Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Current Opinion in Biotechnology, 2014, 27, 96-106.	6.6	89
23	The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies. Journal of the American Chemical Society, 2014, 136, 321-329.	13.7	164
24	Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction. Journal of Biological Chemistry, 2014, 289, 18782-18792.	3.4	99
25	Carbohydrate–Protein Interactions That Drive Processive Polysaccharide Translocation in Enzymes Revealed from a Computational Study of Cellobiohydrolase Processivity. Journal of the American Chemical Society, 2014, 136, 8810-8819.	13.7	95
26	Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium. Journal of Biological Chemistry, 2013, 288, 12828-12839.	3.4	158
27	The Structure of a Bacterial Cellobiohydrolase: The Catalytic Core of the Thermobifida fusca Family GH6 Cellobiohydrolase Cel6B. Journal of Molecular Biology, 2013, 425, 622-635.	4.2	34
28	Rational design, synthesis, evaluation and enzyme – substrate structures of improved fluorogenic substrates for familyÂ6 glycoside hydrolases. FEBS Journal, 2013, 280, 184-198.	4.7	14
29	Enhanced ethanol production from wheat straw by integrated storage and pre-treatment (ISP). Enzyme and Microbial Technology, 2013, 52, 105-110.	3.2	26
30	Structural, Biochemical, and Computational Characterization of the Glycoside Hydrolase Family 7 Cellobiohydrolase of the Tree-killing Fungus Heterobasidion irregulare*. Journal of Biological Chemistry, 2013, 288, 5861-5872.	3.4	70
31	Loop Motions Important to Product Expulsion in the Thermobifida fusca Glycoside Hydrolase Family 6 Cellobiohydrolase from Structural and Computational Studies. Journal of Biological Chemistry, 2013, 288, 33107-33117.	3.4	31
32	Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14646-14651.	7.1	149
33	Product Binding Varies Dramatically between Processive and Nonprocessive Cellulase Enzymes. Journal of Biological Chemistry, 2012, 287, 24807-24813.	3.4	57
34	Insight into tradeâ€off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist, 2012, 194, 1001-1013.	7.3	210
35	The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose. PLoS ONE, 2011, 6, e27807.	2.5	226
36	Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis. Letters in Applied Microbiology, 2011, 53, 73-78.	2.2	34

#	Article	IF	CITATIONS
37	Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresource Technology, 2011, 102, 4449-4455.	9.6	112
38	Hypocrea jecorina CEL6A protein engineering. Biotechnology for Biofuels, 2010, 3, 20.	6.2	55
39	Synthesis of Cyclic \hat{l}^2 -Glucan Using Laminarinase 16A Glycosynthase Mutant from the Basidiomycete Phanerochaete chrysosporium. Journal of the American Chemical Society, 2010, 132, 1724-1730.	13.7	22
40	Airtight storage of moist wheat grain improves bioethanol yields. Biotechnology for Biofuels, 2009, 2, 16.	6.2	17
41	Xâ€ray crystal structures of <i>Phanerochaete chrysosporium</i> Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis. FEBS Journal, 2009, 276, 3858-3869.	4.7	30
42	Three-dimensional Crystal Structure and Enzymic Characterization of \hat{l}^2 -Mannanase Man5A from Blue Mussel Mytilus edulis. Journal of Molecular Biology, 2006, 357, 1500-1510.	4.2	76
43	X-ray crystallographic native sulfur SAD structure determination of laminarinase Lam16A fromPhanerochaete chrysosporium. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1422-1429.	2.5	13
44	Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS Journal, 2005, 272, 1952-1964.	4.7	44
45	Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 2005, 89, 246-291.	2.9	113
46	Crystal Complex Structures Reveal How Substrate is Bound in the â^4 to the +2 Binding Sites of Humicola grisea Cel12A. Journal of Molecular Biology, 2004, 342, 1505-1517.	4.2	32
47	Structure-Reactivity Studies of Trichoderma reesei Cellobiohydrolase Cel7A. ACS Symposium Series, 2004, , 207-226.	0.5	4
48	Dextranase from Penicillium minioluteum. Structure, 2003, 11, 1111-1121.	3.3	80
49	The catalytic module of Cel7D fromPhanerochaete chrysosporiumas a chiral selector: structural studies of its complex with the beta blocker (R)-propranolol. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 637-643.	2.5	11
50	Engineering the Exo-loop of Trichoderma reesei Cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology, 2003, 333, 817-829.	4.2	152
51	The Active Site of Cellobiohydrolase Cel6A fromTrichoderma reesei:Â The Roles of Aspartic Acids D221 and D175. Journal of the American Chemical Society, 2002, 124, 10015-10024.	13.7	133
52	Preparation and crystallization of selenomethionyl dextranase fromPenicillium minioluteumexpressed inPichia pastoris. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 346-348.	2.5	23
53	Crystallization and X-ray analysis of native and selenomethionyl β-mannanase Man5A from blue mussel,Mytilus edulis, expressed inPichia pastoris. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 542-545.	2.5	10
54	Structural basis for enantiomer binding and separation of a common \hat{l}^2 -blocker: crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 \hat{A} resolution. Journal of Molecular Biology, 2001, 305, 79-93.	4.2	61

#	Article	IF	Citations
55	Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 Å resolution and homology models of the isozymes. Journal of Molecular Biology, 2001, 314, 1097-1111.	4.2	101
56	The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 \tilde{A} resolution1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2001, 308, 295-310.	4.2	121
57	Characterization of protein glycoforms with N-linked neutral and phosphorylated oligosaccharides: studies on the glycosylation of endoglucanase 1 (Cel7B) from Trichoderma reesei. Biotechnology and Applied Biochemistry, 2001, 33, 141.	3.1	32
58	Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochemical Journal, 2001, 356, 19-30.	3.7	59
59	Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochemical Journal, 2001, 356, 19.	3.7	29
60	Endoglucanase 28 (Cel12A), a newPhanerochaete chrysosporiumcellulase. FEBS Journal, 1999, 259, 88-95.	0.2	75
61	Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure, 1999, 7, 1035-1045.	3.3	164
62	High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Ã long tunnel of cellobiohydrolase I from Trichoderma reesei 1 1Edited by K. Nagai. Journal of Molecular Biology, 1998, 275, 309-325.	4.2	413
63	The catalytic amino-acid residues in the active site of cellobiohydrolase 1 are involved in chiral recognition. Journal of Biotechnology, 1997, 57, 115-125.	3.8	25
64	The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 \tilde{A} resolution, and a comparison with related enzymes 1 1Edited by K.Nagai. Journal of Molecular Biology, 1997, 272, 383-397.	4.2	238
65	Isotherms for adsorption of cellobiohydrolase I and II fromtrichoderma reesei on microcrystalline cellulose. Applied Biochemistry and Biotechnology, 1997, 66, 39-56.	2.9	65
66	Cellobiohydrolase I from Trichoderma reesei: Identification of an active-site nucleophile and additional information on sequence including the glycosylation pattern of the core protein. Carbohydrate Research, 1997, 304, 143-154.	2.3	63
67	Effect of potential binding site overlap to binding of cellulose to cellulose: a two-dimensional simulation. FEBS Letters, 1996, 378, 51-56.	2.8	22
68	The active sites of cellulases are involved in chiral recognition: a comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Letters, 1996, 390, 339-344.	2.8	54
69	Activity Studies and Crystal Structures of Catalytically Deficient Mutants of Cellobiohydrolase I fromTrichoderma reesei. Journal of Molecular Biology, 1996, 264, 337-349.	4.2	162
70	Identification of functionally important amino acids in the celluloseâ€binding domain of <i>Trichoderma reesei</i> cellobiohydrolase I. Protein Science, 1995, 4, 1056-1064.	7.6	195
71	Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungusPhanerochaete chrysosporium. FEBS Letters, 1995, 369, 233-238.	2.8	61
72	Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reeseiduring hydrolysis of microcrystalline cellulose. Biotechnology and Bioengineering, 1994, 44, 1064-1073.	3.3	97

#	Article	IF	CITATION
73	The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 1994, 265, 524-528.	12.6	605
74	A Combined Cellobiose Oxidase/Glucose Oxidase Biosensor for HPLC Determination On-Line of Glucose and Soluble Cellodextrines. Analytical Biochemistry, 1993, 214, 389-396.	2.4	39
75	Crystallization and Preliminary X-ray Studies on the Core Proteins of Cellobiohydrolase I and Endoglucanase I from Trichoderma reesei. Journal of Molecular Biology, 1993, 234, 905-907.	4.2	21
76	Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochimica Et Biophysica Acta - General Subjects, 1993, 1157, 107-113.	2.4	137
77	Analogs of the cellulose binding domain of cellobiohydrolase I from Trichoderma reesei: Synthesis and binding. , 1993, , 780-781.		0
78	A New Model For Enzymatic Hydrolysis of Cellulose Based on the Two-Domain Structure of Cellobiohydrolase I. Nature Biotechnology, 1991, 9, 286-290.	17.5	128
79	Isolated fungal cellulose terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Letters, 1989, 243, 389-393.	2.8	76
80	A binding-site-deficient, catalytically active, core protein of endoglucanase III from the culture filtrate of Trichoderma reesei. FEBS Journal, 1988, 173, 179-183.	0.2	82
81	EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene, 1988, 63, 11-21.	2.2	313