Mingbo Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9124593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Hollow Core–Shell Fe3O4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules, 2022, 27, 396.	1.7	11
2	Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chemical Engineering Journal, 2021, 416, 127884.	6.6	37
3	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117
4	Some MoS ₂ -Based Materials for Sodium-Ion Battery. , 2021, , 111-126.		0
5	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
6	Oxygenâ€Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for Highâ€Energy Lithium–Sulfur Batteries. Small, 2020, 16, e2000870.	5.2	49
7	Nanomaterials for Supercapacitors. , 2020, , 195-220.		1
8	Synthesis of Three-Dimensional Nanomaterials. , 2020, , 79-105.		0
9	Carbon nanotube-based materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 17204-17241.	5.2	214
10	Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 19465-19470.	5.2	136
11	Boosting the performance of broccoli-like Ni-triazole frameworks through a CNTs conductive-matrix. RSC Advances, 2019, 9, 25697-25702.	1.7	2
12	Iron oxide-based nanomaterials for supercapacitors. Nanotechnology, 2019, 30, 204002.	1.3	47
13	Applications of MxSey (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion. Nano-Micro Letters, 2019, 11, 40.	14.4	78
14	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8986-8992.	3.2	48
15	MXene–2D layered electrode materials for energy storage. Progress in Natural Science: Materials International, 2018, 28, 133-147.	1.8	197
16	Hierarchically Nanostructured Transition Metal Oxides for Lithiumâ€lon Batteries. Advanced Science, 2018, 5, 1700592.	5.6	440
17	Hierarchically nanostructured transition metal oxides for supercapacitors. Science China Materials, 2018, 61, 185-209.	3.5	90
18	Interpenetrated nano-MOFs for ultrahigh-performance supercapacitors and excellent dye adsorption performance. CrystEngComm, 2018, 20, 6940-6949.	1.3	50

#	Article	IF	CITATIONS
19	Tungstenâ€Based Materials for Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1707500.	7.8	114
20	Ultrathin Nanosheet Niâ€Metal Organic Framework Assemblies for Highâ€Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem, 2018, 5, 3859-3865.	1.7	37
21	Stable Voltage Cutoff Cycle Cathode with Tunable and Ordered Porous Structure for Liâ€O ₂ Batteries. Small, 2018, 14, e1803607.	5.2	24
22	Ultrathin Nanobelts as an Excellent Bifunctional Oxygen Catalyst: Insight into the Subtle Changes in Structure and Synergistic Effects of Bimetallic Metal–Organic Framework. Small Methods, 2018, 2, 1800240.	4.6	73
23	Cu ²⁺ -Induced length change of Ni-based coordination polymer nanorods and research on NiO-based hybrid pseudocapacitor electrodes. New Journal of Chemistry, 2018, 42, 9876-9885.	1.4	8
24	Derivatives of coordination compounds for rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 13999-14024.	5.2	58
25	Some MoS ₂ -based materials for sodium-ion battery. Functional Materials Letters, 2018, 11, 1840004.	0.7	17
26	A glassy carbon electrode modified with ordered nanoporous Co3O4 for non-enzymatic sensing of glucose. Mikrochimica Acta, 2017, 184, 943-949.	2.5	25
27	Graphene decorated with metal nanoparticles: Hydrogen sorption and related artefacts. Microporous and Mesoporous Materials, 2017, 250, 27-34.	2.2	22
28	Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Research, 2017, 10, 4305-4317.	5.8	52
29	Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A, 2017, 5, 7651-7666.	5.2	432
30	An electrochemical microRNA sensing platform based on tungsten diselenide nanosheets and competitive RNA–RNA hybridization. Analyst, The, 2017, 142, 4843-4851.	1.7	28
31	In-situ growth of Co3O4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H2O2. Mikrochimica Acta, 2017, 184, 3689-3695.	2.5	42
32	Highâ€Performance Flexible Solidâ€State Asymmetric Supercapacitors based on Ordered Mesoporous Cobalt Oxide. Energy Technology, 2017, 5, 544-548.	1.8	14
33	Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium–Sulfur Batteries. Applied Sciences (Switzerland), 2017, 7, 1036.	1.3	37
34	Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Advances, 2016, 6, 39918-39925.	1.7	39
35	Direct preparation of hierarchical macroporous <i>β</i> -SiC using SiO ₂ opal as both template and precursor and its application in water splitting. Materials Technology, 2016, 31, 526-531.	1.5	2
36	A multi-layered Fe ₂ O ₃ /graphene composite with mesopores as a catalyst for rechargeable aprotic lithium–oxygen batteries. Nanotechnology, 2016, 27, 365402.	1.3	21

#	Article	IF	CITATIONS
37	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 19078-19085.	5.2	411
38	Amorphous FeOOH Quantum Dots Assembled Mesoporous Film Anchored on Graphene Nanosheets with Superior Electrochemical Performance for Supercapacitors. Advanced Functional Materials, 2016, 26, 919-930.	7.8	423
39	Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorganic Chemistry Frontiers, 2016, 3, 791-797.	3.0	88
40	Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International, 2016, 26, 237-242.	1.8	109
41	Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithium-oxygen batteries. NPG Asia Materials, 2016, 8, e239-e239.	3.8	79
42	Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. Journal of Power Sources, 2016, 307, 649-656.	4.0	197
43	High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chemistry Frontiers, 2016, 3, 175-202.	3.0	283
44	Hierarchical nano-branched c-Si/SnO2 nanowires for high areal capacity and stable lithium-ion battery. Nano Energy, 2016, 19, 511-521.	8.2	52
45	Highly cross-linked Cu/a-Si core–shell nanowires for ultra-long cycle life and high rate lithium batteries. Nanoscale, 2016, 8, 2613-2619.	2.8	33
46	Achieving Highâ€Performance Supercapacitors by Constructing Porous Zinc–Manganese Oxide Microstructures. Energy Technology, 2015, 3, 820-824.	1.8	13
47	Glucose–ethanol-assisted synthesis of amorphous CoO@C core–shell composites for electrochemical capacitors electrode. Chemical Engineering Journal, 2015, 266, 141-147.	6.6	26
48	Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 16177-16182.	5.2	135
49	Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 10910-10918.	5.2	155
50	Hierarchically Porous NaCoPO ₄ -Co ₃ O ₄ Hollow Microspheres for Flexible Asymmetric Solid-State Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 831-839.	1.2	47
51	Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li–O ₂ batteries. Chemical Communications, 2015, 51, 7302-7304.	2.2	69
52	1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors. Journal of Power Sources, 2015, 285, 385-392.	4.0	79
53	Core–shell Co 11 (HPO 3) 8 (OH) 6 –Co 3 O 4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2015, 651, 214-221.	2.8	37
54	Facile Synthesis of Hematite Quantumâ€Dot/Functionalized Grapheneâ€Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors. Advanced Functional Materials, 2015, 25, 627-635.	7.8	398

#	Article	IF	CITATIONS
55	Li ₃ VO ₄ anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chemical Communications, 2015, 51, 229-231.	2.2	107
56	Influence of the pore structure parameters of mesoporous anatase microspheres on their performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 1673-1681.	1.2	14
57	Microwave-assisted synthesis of graphene–SnO2 nanocomposite for rechargeable lithium-ion batteries. Materials Letters, 2014, 115, 125-128.	1.3	15
58	Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Mikrochimica Acta, 2014, 181, 1581-1589.	2.5	41
59	Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 15889-15896.	5.2	189
60	Morphology-controlled synthesis of nanostructured zinc hydroxide fluoride via a microwave-assisted ionic liquid route. Solid State Sciences, 2014, 38, 97-102.	1.5	4
61	Fe ₂ O ₃ nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chemical Communications, 2014, 50, 1215-1217.	2.2	297
62	Interweaving of multilevel carbon networks with mesoporous TiO2 for lithium-ion battery anodes. RSC Advances, 2013, 3, 24882.	1.7	1
63	Mesoporous iron oxide directly anchored on a graphene matrix for lithium-ion battery anodes with enhanced strain accommodation. RSC Advances, 2013, 3, 699-703.	1.7	76
64	Formation of Pt nanoparticles in mesoporous silica channels via direct low-temperature decomposition of H2PtCl6·6H2O. Materials Letters, 2013, 106, 193-196.	1.3	9
65	Macro–microporous carbon for supercapacitors derived from rape seed shell. Materials Letters, 2013, 105, 43-46.	1.3	13
66	Fabrication of Hierarchical Macroporous/Mesoporous Carbons via the Dual-Template Method and the Restriction Effect of Hard Template on Shrinkage of Mesoporous Polymers. Journal of Physical Chemistry C, 2013, 117, 8784-8792.	1.5	28
67	Indirect Transformation of Coordinationâ€Polymer Particles into Magnetic Carbonâ€Coated Mn ₃ O ₄ (Mn ₃ O ₄ @C) Nanowires for Supercapacitor Electrodes with Good Cycling Performance. Chemistry - A European Journal, 2013, 19, 7084-7089.	1.7	47
68	Controllable Fabrication of Coordination Polymer Particles (CPPs): A Bridge between Versatile Organic Building Blocks and Porous Copper-Based Inorganic Materials. Crystal Growth and Design, 2012, 12, 5606-5614.	1.4	22
69	High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chemical Communications, 2012, 48, 4106.	2.2	315
70	Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1889-1892.	1.2	54
71	Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1999-2004.	1.2	29
72	A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon, 2012, 50, 107-114.	5.4	112

#	Article	IF	CITATIONS
73	Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Materials Letters, 2012, 75, 126-129.	1.3	31
74	Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes. Journal of Power Sources, 2012, 209, 243-250.	4.0	72
75	MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries. Materials Letters, 2012, 84, 9-12.	1.3	46
76	An Easy and Green Route for the Fabrication of NiO Nanoparticles by Starch Template. Integrated Ferroelectrics, 2011, 127, 128-133.	0.3	5
77	Synthesis of mesoporous MgO nanoplate by an easy solvothermal–annealing method. Solid State Sciences, 2011, 13, 2073-2079.	1.5	33
78	Hydrothermal synthesis of graphene–ZnS quantum dot nanocomposites. Materials Letters, 2011, 65, 198-200.	1.3	59
79	Preparation of Graphene-ZnS Nanocomposites via Hydrothermal Method Using Two Sulfide Sources. Chinese Journal of Chemistry, 2011, 29, 719-723.	2.6	5
80	Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. Journal of Solid State Chemistry, 2011, 184, 953-958.	1.4	246
81	Microwave-assisted synthesis of Sb ₂ Se ₃ submicron tetragonal tubular and spherical crystals. Nanotechnology, 2010, 21, 035606.	1.3	24
82	Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochimica Acta, 2010, 55, 3897-3903.	2.6	275
83	Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes. Nanoscale Research Letters, 2010, 5, 103-7.	3.1	43
84	Template Synthesis of Carbon Nanofibers Containing Linear Mesocage Arrays. Nanoscale Research Letters, 2010, 5, 913-916.	3.1	36
85	Synthesis and magnetic properties of crystalline mesoporous CoFe ₂ O ₄ with large specific surface area. Journal of Materials Chemistry, 2010, 20, 945-952.	6.7	64
86	Structural Characterization of Mesoporous Silica Nanofibers Synthesized Within Porous Alumina Membranes. Nanoscale Research Letters, 2009, 4, 1257-1262.	3.1	25
87	The characterization and application of p-type semiconducting mesoporous carbon nanofibers. Carbon, 2009, 47, 1841-1845.	5.4	31
88	Facile synthesis, characterization and electrochemical properties of cuspate deltoid CoO crystallites. Journal of Alloys and Compounds, 2009, 471, 268-271.	2.8	16
89	Simply synthesis of Co3O4 nanowire arrays using a solvent-free method. Journal of Alloys and Compounds, 2009, 476, 579-583.	2.8	27
90	A new restriction effect of hard templates for the shrinkage of mesoporous polymer during carbonization. Chemical Communications, 2009, , 5033.	2.2	23

#	Article	IF	CITATIONS
91	Synthesis of Ordered Macroporous Co3O4 Microspheres via an Easy Melt Infiltration Route. Chemistry Letters, 2009, 38, 1050-1051.	0.7	5
92	Synthesis of mesostructure anatase TiO2 particles in room-temperature ionic liquids. Materials Letters, 2008, 62, 2954-2956.	1.3	19
93	Surfactant-free synthesis of mesoporous tin oxide with a crystalline wall. Studies in Surface Science and Catalysis, 2007, 165, 331-334.	1.5	0
94	Sonochemical Fabrication and Photoluminescence Properties of Ordered Mesoporous Carbon–Tin Oxide Nanocomposites. Chemistry Letters, 2007, 36, 254-255.	0.7	5
95	Facile Fabrication of Magnetic Nanocomposites of Ordered Mesoporous Carbon Decorated with Nickel Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 504-509.	0.9	8
96	Synthesis of mesoporous structures zinc sulfide by assembly of nanoparticles with block-copolymer as template. Studies in Surface Science and Catalysis, 2007, 165, 327-330.	1.5	0
97	One-step synthesis of new mesoporous carbon nanofibers through an easy template method. Carbon, 2007, 45, 1111-1113.	5.4	28
98	Molten salt synthesis of single-crystal Co3O4 nanorods. Materials Letters, 2007, 61, 3901-3903.	1.3	42
99	Low-temperature solid-state synthesis and phase-controlling studies of CdS nanoparticles. Journal of Materials Science, 2007, 42, 1054-1059.	1.7	15
100	Synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing nickel oxide nanoparticles using sucrose and nickel acetate in a silica template. Journal of Solid State Chemistry, 2007, 180, 792-798.	1.4	35
101	Solvothermal Fabrication of Monodisperse Zinc-blende CdS Nanocrystals. Chemistry Letters, 2006, 35, 1388-1389.	0.7	1
102	Novel Synthesis of Nanoporous Nickel Oxide and Nickel Nanoparticles/Amorphous Carbon Composites Using Soluble Starch as the Template. Chemistry Letters, 2006, 35, 700-701.	0.7	17
103	Preparation of oxide hollow spheres by colloidal carbon spheres. Materials Letters, 2006, 60, 2991-2993.	1.3	65
104	Facile Fabrication of Nickel Oxide Hollow Spheres and Amorphous Carbon/Nickel Nanoparticles Composites Using Colloidal Carbonaceous Microspheres as Template. Chemistry Letters, 2005, 34, 1174-1175.	0.7	14
105	Solvothermal Preparation of Single-crystalline Gold Nanorods in Novel Nonaqueous Microemulsions. Chemistry Letters, 2005, 34, 730-731.	0.7	11
106	Controllable syntheses of hexagonal and lamellar mesostructured lanthanum oxide. Materials Letters, 2005, 59, 408-411.	1.3	22
107	Fabrication of CuS nanocrystals with various morphologies in the presence of a nonionic surfactant. Materials Letters, 2005, 59, 3169-3172.	1.3	49
108	Microwave-assisted Synthesis of Flower-like ZnO Nanosheet Aggregates in a Room-temperature Ionic Liquid. Chemistry Letters, 2004, 33, 1332-1333.	0.7	45