Paula GarcÃ-a Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9124281/publications.pdf

Version: 2024-02-01

279487 329751 1,761 41 23 37 citations g-index h-index papers 43 43 43 1580 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Technological Application of Tannin-Based Extracts. Molecules, 2020, 25, 614.	1.7	124
2	Essential Oils and Their Application on Active Packaging Systems: A Review. Resources, 2021, 10, 7.	1.6	112
3	Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food and Function, 2020, 11, 4853-4877.	2.1	111
4	Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals, 2021, 14, 157.	1.7	105
5	Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants, 2022, 11, 60.	2.2	97
6	Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. International Journal of Environmental Research and Public Health, 2021, 18, 9153.	1.2	89
7	Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chemistry, 2021, 341, 128262.	4.2	87
8	Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science and Technology, 2021, 117, 163-181.	7.8	83
9	Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics, 2020, 9, 642.	1.5	81
10	Scientific Approaches on Extraction, Purification and Stability for the Commercialization of Fucoxanthin Recovered from Brown Algae. Foods, 2020, 9, 1113.	1.9	69
11	By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins' Biological Activities and Their Potential for Valorization. Foods, 2021, 10, 137.	1.9	65
12	Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. Resources, 2020, 9, 101.	1.6	59
13	Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. International Journal of Molecular Sciences, 2021, 22, 1339.	1.8	59
14	Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods, 2021, 10, 51.	1.9	55
15	Analytical Metabolomics and Applications in Health, Environmental and Food Science. Critical Reviews in Analytical Chemistry, 2022, 52, 712-734.	1.8	49
16	Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods, 2021, 10, 251.	1.9	47
17	Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends in Food Science and Technology, 2021, 116, 1084-1104.	7.8	42
18	Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Critical Reviews in Food Science and Nutrition, 2023, 63, 1901-1929.	5.4	41

#	Article	IF	CITATIONS
19	The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Marine Drugs, 2021, 19, 178.	2.2	31
20	Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits. Food and Function, 2020, 11, 8493-8515.	2.1	30
21	Screening of Bioactive Properties in Brown Algae from the Northwest Iberian Peninsula. Foods, 2021, 10, 1915.	1.9	30
22	Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants, 2022, 11, 176.	2.2	30
23	Traditional plants from Asteraceae family as potential candidates for functional food industry. Food and Function, 2021, 12, 2850-2873.	2.1	28
24	Evolution of Flavors in Extra Virgin Olive Oil Shelf-Life. Antioxidants, 2021, 10, 368.	2.2	27
25	Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends in Food Science and Technology, 2022, 119, 23-35.	7.8	27
26	Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Applied Sciences (Switzerland), 2022, 12, 1703.	1.3	25
27	Scientific basis for the industrialization of traditionally used plants of the Rosaceae family. Food Chemistry, 2020, 330, 127197.	4.2	23
28	Extraction, Properties, and Applications of Bioactive Compounds Obtained from Microalgae. Current Pharmaceutical Design, 2020, 26, 1929-1950.	0.9	22
29	State-of-the-Art of Analytical Techniques to Determine Food Fraud in Olive Oils. Foods, 2021, 10, 484.	1.9	14
30	Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition. Processes, 2020, 8, 988.	1.3	11
31	Algae as a Source of Bioactive Compounds to Prevent the Development of Type 2 Diabetes Mellitus. Current Medicinal Chemistry, 2021, 28, 4592-4615.	1.2	11
32	Macroalgae as an Alternative Source of Nutrients and Compounds with Bioactive Potential. Proceedings (mdpi), 2020, 70, .	0.2	7
33	Approaches for sustainable food production and consumption systems. , 2022, , 23-38.		6
34	Plants of the Family Asteraceae: Evaluation of Biological Properties and Identification of Phenolic Compounds. Chemistry Proceedings, 2021, 5, .	0.1	4
35	Identification, Quantification, and Method Validation of Anthocyanins., 2021, 5, .		2
36	Carotenoids as Natural Colorful Additives for the Food Industry. , 0, , .		1

#	Article	IF	CITATIONS
37	Recovery of Phenolic Compounds from Edible Algae Using High Hydrostatic Pressure: An Optimization Approach. Proceedings (mdpi), 2021, 70, 110.	0.2	1
38	Essential Oils as Possible Candidates to Be Included in Active Packaging Systems and the Use of Biosensors to Monitor the Quality of Foodstuff., $2021, 5, \ldots$		1
39	Plant Antioxidants from Agricultural Waste: Synergistic Potential with Other Biological Properties and Possible Applications. Reference Series in Phytochemistry, 2022, , 343-380.	0.2	1
40	Red Algae as Source of Nutrients with Antioxidant and Antimicrobial Potential. Proceedings (mdpi), 2020, 70, .	0.2	0
41	Bioactive Compounds Extracted from Edible Legumes Not Suitable for Marketing—A Source of Functional Ingredients. , 2022, 12, .		0