
Hongyin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review. International Journal of Molecular Sciences, 2011, 12, 917-934.	1.8	131
2	Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. International Journal of Food Microbiology, 2011, 146, 151-156.	2.1	112
3	Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control, 2007, 18, 287-291.	2.8	96
4	Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 2007, 40, 287-292.	1.4	94
5	Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. International Journal of Food Microbiology, 2013, 162, 167-173.	2.1	89
6	Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biology and Technology, 2005, 35, 79-86.	2.9	76
7	Control of postharvest blue mold decay in pears by Meyerozyma guilliermondii and it's effects on the protein expression profile of pears. Postharvest Biology and Technology, 2018, 136, 124-131.	2.9	72
8	Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science and Technology, 2018, 78, 180-187.	7.8	65
9	Ascorbic Acid Enhances Oxidative Stress Tolerance and Biological Control Efficacy of <i>Pichia caribbica</i> against Postharvest Blue Mold Decay of Apples. Journal of Agricultural and Food Chemistry, 2014, 62, 7612-7621.	2.4	63
10	Postharvest biological control of Rhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens. Postharvest Biology and Technology, 2020, 163, 111146.	2.9	63
11	Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biological Control, 2016, 92, 172-180.	1.4	58
12	Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science and Technology, 2017, 69, 36-45.	7.8	58
13	Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. International Journal of Food Microbiology, 2008, 126, 167-171.	2.1	56
14	Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 2009, 48, 79-83.	1.4	56
15	Isolation and characterization of a Bacillus subtilis strain with aflatoxin B 1 biodegradation capability. Food Control, 2017, 75, 92-98.	2.8	53
16	Biodegradation of zearalenone by Saccharomyces cerevisiae : Possible involvement of ZEN responsive proteins of the yeast. Journal of Proteomics, 2016, 143, 416-423.	1.2	52
17	Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches. International Journal of Food Microbiology, 2007, 115, 53-58.	2.1	50
18	Transcriptome characterization and expression profile of defense-related genes in pear induced by Meyerozyma guilliermondii. Postharvest Biology and Technology, 2018, 141, 63-70.	2.9	50

#	Article	IF	CITATIONS
19	Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: A review. Trends in Food Science and Technology, 2016, 51, 88-97.	7.8	49
20	Screening and identification of an antagonistic yeast controlling postharvest blue mold decay of pears and the possible mechanisms involved. Biological Control, 2019, 133, 26-33.	1.4	49
21	Investigating the effect of methyl jasmonate on the biocontrol activity of Meyerozyma guilliermondii against blue mold decay of apples and the possible mechanisms involved. Physiological and Molecular Plant Pathology, 2020, 109, 101454.	1.3	49
22	Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 2008, 47, 60-65.	1.4	48
23	Biocontrol of Postharvest Rhizopus Decay of Peaches with Pichia caribbica. Current Microbiology, 2013, 67, 255-261.	1.0	48
24	Enhanced Biocontrol Activity of <i>Rhodotorula mucilaginosa</i> Cultured in Media Containing Chitosan against Postharvest Diseases in Strawberries: Possible Mechanisms Underlying the Effect. Journal of Agricultural and Food Chemistry, 2014, 62, 4214-4224.	2.4	48
25	Investigating Proteome and Transcriptome Defense Response of Apples Induced by <i>Yarrowia lipolytica</i> . Molecular Plant-Microbe Interactions, 2017, 30, 301-311.	1.4	48
26	Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biology and Technology, 2017, 126, 15-22.	2.9	48
27	The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved. Biological Control, 2017, 113, 18-25.	1.4	47
28	Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biological Control, 2016, 103, 30-38.	1.4	46
29	Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes. Postharvest Biology and Technology, 2017, 132, 162-170.	2.9	46
30	Biocontrol Agents Increase the Specific Rate of Patulin Production by Penicillium expansum but Decrease the Disease and Total Patulin Contamination of Apples. Frontiers in Microbiology, 2017, 8, 1240.	1.5	46
31	Efficacy of Yarrowia lipolytica in the biocontrol of green mold and blue mold in Citrus reticulata and the mechanisms involved. Biological Control, 2019, 139, 104096.	1.4	46
32	Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2447-2472.	5.9	45
33	Biological Control of Patulin by Antagonistic Yeast: A case study and possible model. Critical Reviews in Microbiology, 2016, 42, 643-655.	2.7	43
34	Integrated control of postharvest blue mold decay of pears with hot water treatment and Rhodotorula glutinis. Postharvest Biology and Technology, 2008, 49, 308-313.	2.9	42
35	Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. Biological Control, 2018, 121, 14-22.	1.4	42
36	Identification and toxicological analysis of products of patulin degradation by Pichia caribbica. Biological Control, 2018, 123, 127-136.	1.4	42

#	Article	IF	CITATIONS
37	Methyl jasmonate enhances biocontrol efficacy of Rhodotorula glutinis to postharvest blue mold decay of pears. Food Chemistry, 2009, 117, 621-626.	4.2	41
38	Study on biocontrol of postharvest decay of table grapes caused by Penicillium rubens and the possible resistance mechanisms by Yarrowia lipolytica. Biological Control, 2019, 130, 110-117.	1.4	41
39	Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Critical Reviews in Microbiology, 2020, 46, 450-462.	2.7	41
40	The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica. Toxins, 2016, 8, 289.	1.5	40
41	Biocontrol of Botrytis cinerea in apple fruit by Cryptococcus laurentii and indole-3-acetic acid. Biological Control, 2008, 46, 171-177.	1.4	39
42	Bamboo leaf flavonoid enhances the control effect of Pichia caribbica against Penicillium expansum growth and patulin accumulation in apples. Postharvest Biology and Technology, 2018, 141, 1-7.	2.9	39
43	Salicylic acid enhances biocontrol efficacy of Rhodotorula glutinis against postharvest Rhizopus rot of strawberries and the possible mechanisms involved. Food Chemistry, 2010, 122, 577-583.	4.2	38
44	Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism. LWT - Food Science and Technology, 2020, 124, 109188.	2.5	38
45	Mechanisms of glycine betaine enhancing oxidative stress tolerance and biocontrol efficacy of Pichia caribbica against blue mold on apples. Biological Control, 2017, 108, 55-63.	1.4	37
46	Effect of chitin on the antagonistic activity of Rhodotorula glutinis against Botrytis cinerea in strawberries and the possible mechanisms involved. Food Chemistry, 2010, 120, 490-495.	4.2	36
47	Efficacy of epsilon-poly-L-lysine inhibition of postharvest blue mold in apples and potential mechanisms. Postharvest Biology and Technology, 2021, 171, 111346.	2.9	36
48	Enhancement of Biocontrol Efficacy of Pichia carribbica to Postharvest Diseases of Strawberries by Addition of Trehalose to the Growth Medium. International Journal of Molecular Sciences, 2012, 13, 3916-3932.	1.8	35
49	Effect of β-glucan on the biocontrol efficacy of Cryptococcus podzolicus against postharvest decay of pears and the possible mechanisms involved. Postharvest Biology and Technology, 2020, 160, 111057.	2.9	35
50	Postharvest control of blue mold rot of pear by microwave treatment and Cryptococcus laurentii. Journal of Food Engineering, 2006, 77, 539-544.	2.7	34
51	The Response of Rhodotorula mucilaginosa to Patulin Based on Lysine Crotonylation. Frontiers in Microbiology, 2018, 9, 2025.	1.5	34
52	Comparative Transcriptomic Analysis of the Interaction between Penicillium expansum and Apple Fruit (Malus pumila Mill.) during Early Stages of Infection. Microorganisms, 2019, 7, 495.	1.6	34
53	Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4906-4930.	5.9	33
54	Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product. Talanta, 2015, 132, 600-605.	2.9	32

#	Article	IF	CITATIONS
55	S-Adenosylmethionine-Dependent Methyltransferase Helps <i>Pichia caribbica</i> Degrade Patulin. Journal of Agricultural and Food Chemistry, 2019, 67, 11758-11768.	2.4	32
56	Biocontrol activity of Rhodotorula mucilaginosa combined with salicylic acid against Penicillium digitatum infection in oranges. Biological Control, 2019, 135, 23-32.	1.4	32
57	Investigating the biocontrol potentiality of Wickerhamomyces anomalus against postharvest gray mold decay in cherry tomatoes. Scientia Horticulturae, 2021, 285, 110137.	1.7	32
58	Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. International Journal of Food Microbiology, 2010, 141, 122-125.	2.1	29
59	Control of postharvest black rot caused by Alternaria alternata in strawberries by the combination of Cryptococcus laurentii and Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester. Biological Control, 2015, 90, 96-101.	1.4	29
60	Effect of trehalose on the biocontrol efficacy of <i>Pichia caribbica</i> against post-harvest grey mould and blue mould decay of apples. Pest Management Science, 2013, 69, 983-989.	1.7	28
61	Exogenous trehalose enhanced the biocontrol efficacy of <scp><i>Hanseniaspora uvarum</i></scp> against grape berry rots caused by <i>Aspergillus tubingensis</i> and <i>Penicillium commune</i> . Journal of the Science of Food and Agriculture, 2018, 98, 4665-4672.	1.7	28
62	Isolation of pathogenic fungi causing postharvest decay in table grapes and in vivo biocontrol activity of selected yeasts against them. Physiological and Molecular Plant Pathology, 2020, 110, 101478.	1.3	28
63	A review on citrinin: Its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control. Food Research International, 2021, 141, 110075.	2.9	28
64	Phytic Acid Enhances Biocontrol Activity of Rhodotorula mucilaginosa against Penicillium expansum Contamination and Patulin Production in Apples. Frontiers in Microbiology, 2015, 6, 1296.	1.5	27
65	Preparation, characterization and antibacterial activity of octenyl succinic anhydride modified inulin. International Journal of Biological Macromolecules, 2015, 78, 79-86.	3.6	27
66	Ultrastructure observation and transcriptome analysis of Penicillium expansum invasion in postharvest pears. Postharvest Biology and Technology, 2020, 165, 111198.	2.9	27
67	Aureobasidium pullulans S-2 reduced the disease incidence of tomato by influencing the postharvest microbiome during storage. Postharvest Biology and Technology, 2022, 185, 111809.	2.9	27
68	Enhancement the biocontrol efficacy of Sporidiobolus pararoseus Y16 against apple blue mold decay by glycine betaine and its mechanism. Biological Control, 2019, 139, 104079.	1.4	26
69	Study on the Infection Mechanism of Penicillium Digitatum on Postharvest Citrus (Citrus Reticulata) Tj ETQq1	1 0.784314 1.6	rgBT /Over or
70	Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes. Toxins, 2016, 8, 333.	1.5	24
71	Transcriptomic and proteomic analysis of the mechanisms involved in enhanced disease resistance of strawberries induced by Rhodotorula mucilaginosa cultured with chitosan. Postharvest Biology and Technology, 2021, 172, 111355.	2.9	24
72	Effects of the combination of Baobab (Adansonia digitata L.) and Sporidiobolus pararoseus Y16 on blue mold of apples caused by Penicillium expansum. Biological Control, 2019, 134, 87-94.	1.4	23

#	Article	IF	CITATIONS
73	Molecular dissection of defense response of pears induced by the biocontrol yeast, Wickerhamomyces anomalus using transcriptomics and proteomics approaches. Biological Control, 2020, 148, 104305.	1.4	23
74	Efficacy of Wickerhamomyces anomalus yeast in the biocontrol of blue mold decay in apples and investigation of the mechanisms involved. BioControl, 2021, 66, 547-558.	0.9	22
75	Study on the effect of alginate oligosaccharide combined with Meyerozyma guilliermondii against Penicillium expansum in pears and the possible mechanisms involved. Physiological and Molecular Plant Pathology, 2021, 115, 101654.	1.3	22
76	Phytic acid enhances biocontrol efficacy of Rhodotorula mucilaginosa against postharvest gray mold spoilage and natural spoilage of strawberries. LWT - Food Science and Technology, 2013, 52, 110-115.	2.5	21
77	Securing fruit production: Opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2508-2533.	5.9	21
78	Chitin enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches. International Journal of Biological Macromolecules, 2016, 88, 465-475.	3.6	20
79	Effects of <i> Sporidiobolus pararoseus</i> Y16 on Postharvest Blue Mold Decay and the Defense Response of Apples. Journal of Food Quality, 2018, 2018, 1-9.	1.4	20
80	Efficacy of Meyerozyma caribbica in the biocontrol of blue mold in kiwifruit and mechanisms involved. Biological Control, 2022, 173, 105000.	1.4	20
81	Yarrowia lipolytica reduces the disease incidence of asparagus infected by Fusarium proliferatum by affecting respiratory metabolism and energy status. Biological Control, 2021, 159, 104625.	1.4	19
82	Investigating proteome and transcriptome response of Cryptococcus podzolicus Y3 to citrinin and the mechanisms involved in its degradation. Food Chemistry, 2019, 283, 345-352.	4.2	18
83	Biodegradation of mycotoxin patulin by the yeast Meyerozyma guilliermondii. Biological Control, 2021, 160, 104692.	1.4	18
84	Burdock fructooligosaccharide enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches. Carbohydrate Polymers, 2013, 98, 366-371.	5.1	17
85	Crosstalk between proteins expression and lysine acetylation in response to patulin stress in Rhodotorula mucilaginosa. Scientific Reports, 2017, 7, 13490.	1.6	17
86	Proteomics profile of Hanseniaspora uvarum enhanced with trehalose involved in the biocontrol efficacy of grape berry. Food Chemistry, 2019, 274, 907-914.	4.2	17
87	Transcriptomic analysis of the mechanisms involved in enhanced antagonistic efficacy of Meyerozyma guilliermondii by methyl jasmonate and disease resistance of postharvest apples. LWT - Food Science and Technology, 2022, 160, 113323.	2.5	17
88	Screening of Deoxynivalenol Producing Strains and Elucidation of Possible Toxigenic Molecular Mechanism. Toxins, 2017, 9, 184.	1.5	16
89	The Possible Mechanisms Involved in Citrinin Elimination by Cryptococcus podzolicus Y3 and the Effects of Extrinsic Factors on the Degradation of Citrinin. Journal of Microbiology and Biotechnology, 2017, 27, 2119-2128.	0.9	15
90	20-Hydroxy-3-Oxolupan-28-Oic Acid Attenuates Inflammatory Responses by Regulating PI3K–Akt and MAPKs Signaling Pathways in LPS-Stimulated RAW264.7 Macrophages. Molecules, 2019, 24, 386.	1.7	14

#	Article	IF	CITATIONS
91	Genome-wide investigation and analysis of U-box Ubiquitin–Protein ligase gene family in apple: Expression profiles during Penicillium expansum infection process. Physiological and Molecular Plant Pathology, 2020, 111, 101487.	1.3	14
92	Controlling black spot of postharvest broccoli by Meyerozyma guilliermondii and its regulation on ROS metabolism of broccoli. Biological Control, 2022, 170, 104938.	1.4	14
93	Elucidation of the Initial Growth Process and the Infection Mechanism of Penicillium digitatum on Postharvest Citrus (Citrus reticulata Blanco). Microorganisms, 2019, 7, 485.	1.6	13
94	The infection of grapes by Talaromyces rugulosus O1 and the role of cell wall-degrading enzymes and ochratoxin A in the infection. Physiological and Molecular Plant Pathology, 2019, 106, 263-269.	1.3	13
95	Investigating possible mechanisms of Pichia caribbica induced with ascorbic acid against postharvest blue mold of apples. Biological Control, 2020, 141, 104129.	1.4	13
96	Proteomic analysis reveals the mechanisms involved in the enhanced biocontrol efficacy of Rhodotorula mucilaginosa induced by chitosan. Biological Control, 2020, 149, 104325.	1.4	13
97	Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices. International Journal of Food Microbiology, 2021, 339, 109025.	2.1	13
98	Recent advances in <i>Penicillium expansum</i> infection mechanisms and current methods in controlling <i>P. expansum</i> in postharvest apples. Critical Reviews in Food Science and Nutrition, 2023, 63, 2598-2611.	5.4	13
99	Molecular explication of grape berry-fungal infections and their potential application in recent postharvest infection control strategies. Trends in Food Science and Technology, 2021, 116, 903-917.	7.8	13
100	Transcriptomic analysis of the disease-resistance response in mandarins induced by the biocontrol yeast, Yarrowia lipolytica. Biological Control, 2021, 163, 104607.	1.4	13
101	Efficacy of Meyerozyma guilliermondii in controlling patulin production by Penicillium expansum in shuijing pears. Biological Control, 2022, 168, 104856.	1.4	13
102	Efficacy of the Yeast Wickerhamomyces anomalus in Biocontrol of Gray Mold Decay of Tomatoes and Study of the Mechanisms Involved. Foods, 2022, 11, 720.	1.9	13
103	Pichia anomala Induced With Chitosan Triggers Defense Response of Table Grapes Against Post-harvest Blue Mold Disease. Frontiers in Microbiology, 2021, 12, 704519.	1.5	12
104	Pichia caribbica improves disease resistance of cherry tomatoes by regulating ROS metabolism. Biological Control, 2022, 169, 104870.	1.4	12
105	Trehalose supplementation enhanced the biocontrol efficiency of <i>Sporidiobolus pararoseus</i> <scp>Y16</scp> through increased oxidative stress tolerance and altered transcriptome. Pest Management Science, 2021, 77, 4425-4436.	1.7	11
106	Investigating proteome and transcriptome defense response of table grapes induced by Yarrowia lipolytica. Scientia Horticulturae, 2021, 276, 109742.	1.7	10
107	Transcriptome Characterization and Expression Profiles of Disease Defense-Related Genes of Table Grapes in Response to Pichia anomala Induced with Chitosan. Foods, 2021, 10, 1451.	1.9	9
108	A Comparative Analysis of the Microbiome of Kiwifruit at Harvest Under Open-Field and Rain-Shelter Cultivation Systems. Frontiers in Microbiology, 2021, 12, 757719.	1.5	9

#	Article	IF	CITATIONS
109	Cryptococcus podzolicus Y3 degrades ochratoxin A by intracellular enzymes and simultaneously eliminates citrinin. Biological Control, 2022, 168, 104857.	1.4	9
110	The necrosis-inducing protein (NIP) gene contributes to Penicillium expansum virulence during postharvest pear infection. Food Research International, 2022, 158, 111562.	2.9	9
111	Antioxidative enzymes and substances involve in the activity of improving the oxidative tolerance of Pichia caribbica by ascorbic acid. Biological Control, 2017, 108, 83-88.	1.4	8
112	The effect of Rhodotorula mucilaginosa on degradation of citrinin production by Penicillium digitatum and its toxin in vitro. Journal of Food Measurement and Characterization, 2019, 13, 2998-3004.	1.6	8
113	Population dynamics of Rhodotorula mucilaginosa on apples, apple defense response, and transcriptomic response of the yeast to patulin. Biological Control, 2020, 146, 104283.	1.4	8
114	Transcriptome analysis of postharvest grapes in response to Talaromyces rugulosus O1 infection. Postharvest Biology and Technology, 2021, 178, 111542.	2.9	8
115	Metabonomics analysis of postharvest citrus response to Penicillium digitatum infection. LWT - Food Science and Technology, 2021, 152, 112371.	2.5	8
116	Analysis of long non-coding RNAs and mRNAs in harvested kiwifruit in response to the yeast antagonist, Wickerhamomyces anomalus. Computational and Structural Biotechnology Journal, 2021, 19, 5589-5599.	1.9	8
117	Integration of proteome and transcriptome data reveals the mechanism involved in controlling of <i>Fusarium graminearum</i> by <i>Saccharomyces cerevisiae</i> . Journal of the Science of Food and Agriculture, 2019, 99, 5760-5770.	1.7	7
118	Effect of <i>Rhodotorula mucilaginosa</i> on patulin degradation and toxicity of degradation products. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 1427-1439.	1.1	7
119	Transcriptome analysis reveals the mechanisms involved in the enhanced antagonistic efficacy of Rhodotorula mucilaginosa induced by chitosan. LWT - Food Science and Technology, 2021, 142, 110992.	2.5	7
120	Transcriptome analysis of postharvest pear (Pyrus pyrifolia Nakai) in response to Penicillium expansum infection. Scientia Horticulturae, 2021, 288, 110361.	1.7	7
121	The biocontrol efficacy of Sporidiobolus pararoseus Y16 cultured with Gamma-aminobutyric acid and its effects on the resistant substances of postharvest grapes. Biological Control, 2022, 169, 104900.	1.4	7
122	Metabolomic profiling and energy metabolism modulation unveil the mechanisms involved in enhanced disease resistance of postharvest broccoli by Meyerozyma guilliermondii. Scientia Horticulturae, 2022, 303, 111239.	1.7	7
123	Integration of transcriptome and proteome data reveals ochratoxin A biosynthesis regulated by pH in Penicillium citrinum. RSC Advances, 2017, 7, 46767-46777.	1.7	6
124	Effects of baobab (Adansonia digitata L.) in combination with Sporidiobolus pararoseus Y16 on the activities of the defense-related enzymes and the expression levels of defense-related genes of apples. Biological Control, 2019, 139, 104094.	1.4	6
125	The protein expression profile and transcriptome characterization of Pichia caribbica induced by ascorbic acid under the oxidative stress. Biological Control, 2020, 142, 104164.	1.4	6
126	Degradation and stress response mechanism of Cryptococcus podzolicus Y3 on ochratoxin A at the transcriptional level. LWT - Food Science and Technology, 2022, 157, 113061.	2.5	6

#	Article	IF	CITATIONS
127	Transcriptome analysis of the disease resistance in postharvest pears induced by Meyerozyma guilliermondii combined with alginate oligosaccharide. Biological Control, 2022, 170, 104931.	1.4	6
128	The mechanism involved in enhancing the biological control efficacy of Rhodotorula mucilaginosa with salicylic acid to postharvest green mold decay of oranges. Journal of Food Measurement and Characterization, 2020, 14, 3146-3155.	1.6	5
129	Transcriptome analysis of asparagus in response to postharvest treatment with Yarrowia lipolytica. Biological Control, 2022, 169, 104906.	1.4	5
130	Protein Expression Profile and Transcriptome Characterization of <i>Penicillium expansum</i> Induced by <i>Meyerozyma guilliermondii</i> . Journal of Food Quality, 2020, 2020, 1-12.	1.4	4
131	Reply to Comment on "Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes― Toxins 2016, 8, 333â€â€°'in Reporting Ochratoxin A Production from Strains of Aspergillus, Penicillium and Talaromyces. Toxins, 2017, 9, 66.	1.5	3
132	Protein and transcript profiling analysis of the response of <i>Yarrowia lipolytica</i> Yâ€2 in the degradation of ochratoxin A. Annals of Applied Biology, 2019, 175, 98-110.	1.3	3
133	Microclimatic parameters affect Cladosporium rot development and berry quality in table grapes. Horticultural Plant Journal, 2022, 8, 171-183.	2.3	3
134	Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions. Foods, 2022, 11, 1194.	1.9	3
135	Chromatin accessibility of Meyerozyma guilliermondii under patulin stress. Biological Control, 2022, 172, 104974.	1.4	3
136	Effects of <i>Fusarium Proliferatum</i> infection on the quality and respiratory metabolism of postharvest asparagus. New Zealand Journal of Crop and Horticultural Science, 2022, 50, 143-161.	0.7	2
137	Whole-genome sequencing of Cryptococcus podzolicus Y3 and data-independent acquisition-based proteomic analysis during OTA degradation. Food Control, 2022, 136, 108862.	2.8	2
138	Biodecontamination of Mycotoxin Patulin. , 2020, , 181-202.		1
139	Consumer evaluation of sensory properties of table grapes treated with yeast Pichia anomala induced by chitosan. Biological Control, 2022, 170, 104939.	1.4	1
140	Bio-decontamination of Mycotoxin Patulin. , 2021, , 165-185.		0