Leiting Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9123939/publications.pdf

Version: 2024-02-01

471509 642732 1,273 25 17 23 citations h-index g-index papers 25 25 25 1779 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unraveling the Voltageâ€Dependent Oxidation Mechanisms of Poly(Ethylene Oxide)â€Based Solid Electrolytes for Solidâ€State Batteries. Advanced Materials Interfaces, 2022, 9, 2100704.	3.7	28
2	Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5â€V all-solid-state lithium batteries with superior performance. Energy Storage Materials, 2022, 45, 1062-1073.	18.0	21
3	Assessing Longâ€Term Cycling Stability of Singleâ€Crystal Versus Polycrystalline Nickelâ€Rich NCM in Pouch Cells with 6 mAh cm ^{â^²2} Electrodes. Small, 2022, 18, e2107357.	10.0	41
4	Elucidating the Humidity-Induced Degradation of Ni-Rich Layered Cathodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 13240-13249.	8.0	9
5	Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox. Nature Materials, 2022, 21, 1165-1174.	27.5	34
6	Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials, 2021, 20, 353-361.	27.5	155
7	Deciphering Interfacial Reactions via Optical Sensing to Tune the Interphase Chemistry for Optimized Na″on Electrolyte Formulation. Advanced Energy Materials, 2021, 11, 2101490.	19.5	24
8	Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nature Chemistry, 2021, 13, 1070-1080.	13.6	75
9	Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry. Energy Storage Materials, 2021, 42, 12-21.	18.0	47
10	Elucidation of Gas Evolution in Model Sodium Battery Cells By Online Electrochemical Mass Spectrometry. ECS Meeting Abstracts, 2021, MA2021-02, 250-250.	0.0	0
11	Impact of Nickel Substitution into Model Li-Rich Oxide Cathode Materials for Li-Ion Batteries. Chemistry of Materials, 2020, 32, 849-857.	6.7	16
12	Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nature Communications, 2020, 11, 1252.	12.8	89
13	New Amorphous Iron-Based Oxyfluorides as Cathode Materials for High-Capacity Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 21386-21394.	3.1	18
14	Synthesis by Thermal Decomposition of Two Iron Hydroxyfluorides: Structural Effects of Li Insertion. Chemistry of Materials, 2019, 31, 4246-4257.	6.7	16
15	CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chemical Engineering Journal, 2019, 369, 77-86.	12.7	75
16	Net-Structured Filter of Co(OH) ₂ -Anchored Carbon Nanofibers with Ketjen Black for High Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 17099-17107.	6.7	23
17	Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2884-2890.	17.4	74
18	Origin of the High Capacity Manganese-Based Oxyfluoride Electrodes for Rechargeable Batteries. Chemistry of Materials, 2018, 30, 5362-5372.	6.7	16

#	Article	IF	CITATION
19	Electrochemically activated MnO as a cathode material for sodium-ion batteries. Electrochemistry Communications, 2017, 77, 81-84.	4.7	12
20	Triggering the In Situ Electrochemical Formation of High Capacity Cathode Material from MnO. Advanced Energy Materials, 2017, 7, 1602200.	19.5	15
21	Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2017, 8, 3466-3472.	4.6	109
22	Triggering the in Situ Electrochemical Formation of High Energy Density Cathode Material from MnO. ECS Meeting Abstracts, 2016, , .	0.0	0
23	Influence of relative humidity on the structure and electrochemical performance of sustainable LiFeSO ₄ F electrodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16988-16997.	10.3	32
24	One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chemical Communications, 2011, 47, 6828.	4.1	214
25	Controllable synthesis of spinel nano-ZnMn2O4via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 11987.	6.7	130