Aurora Lara-Núñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9123581/publications.pdf

Version: 2024-02-01

23 674 16 23 papers citations h-index g-index

23 23 23 1003 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10412-10417.	7.1	81
2	Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant, Cell and Environment, 2006, 29, 2009-2016.	5.7	80
3	Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. Plant Journal, 2010, 64, 267-279.	5.7	67
4	A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant Journal, 2010, 64, 256-266.	5.7	48
5	FolX and FolM Are Essential for Tetrahydromonapterin Synthesis in Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology, 2010, 192, 475-482.	2.2	46
6	Developmental and Feedforward Control of the Expression of Folate Biosynthesis Genes in Tomato Fruit. Molecular Plant, 2010, 3, 66-77.	8.3	44
7	Allelochemical Stress Can Trigger Oxidative Damage in Receptor Plants. Plant Signaling and Behavior, 2007, 2, 269-270.	2.4	43
8	Synergistic use of plant-prokaryote comparative genomics for functional annotations. BMC Genomics, 2011, 12, S2.	2.8	43
9	Moonlighting Glutamate Formiminotransferases Can Functionally Replace 5-Formyltetrahydrofolate Cycloligase*. Journal of Biological Chemistry, 2010, 285, 41557-41566.	3.4	25
10	Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals. Functional and Integrative Genomics, 2012, 12, 25-34.	3.5	25
11	6-Pyruvoyltetrahydropterin Synthase Paralogs Replace the Folate Synthesis Enzyme Dihydroneopterin Aldolase in Diverse Bacteria. Journal of Bacteriology, 2009, 191, 4158-4165.	2.2	23
12	Phytotoxic effects of <i>Sicyos deppei</i> (Cucurbitaceae) in germinating tomato seeds. Physiologia Plantarum, 2009, 136, 180-192.	5.2	23
13	Glucose and sucrose differentially modify cell proliferation in maize during germination. Plant Physiology and Biochemistry, 2017, 113, 20-31.	5.8	22
14	A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism. Functional and Integrative Genomics, 2011, 11, 467-478.	3.5	21
15	Maize D4;1 and D5 cyclin proteins in germinating maize. Associated kinase activity and regulation by phytohormones. Physiologia Plantarum, 2007, 132, 071115143317002-???.	5.2	20
16	Modulation of CycD3;1â€CDK complexes by phytohormones and sucrose during maize germination. Physiologia Plantarum, 2017, 160, 84-97.	5.2	19
17	Glucose modulates proliferation in root apical meristems via TOR in maize during germination. Plant Physiology and Biochemistry, 2020, 155, 126-135.	5.8	13
18	Characterization of a dicarboxylate exchange system able to exchange pyrophosphate for ?-malate in non-photosynthetic plastids from developing maize embryos. Plant Science, 2004, 166, 1335-1343.	3.6	9

#	Article	IF	CITATIONS
19	Proliferating cell nuclear antigen associates to protein complexes containing cyclins/cyclin dependent kinases susceptible of inhibition by KRPs during maize germination. Plant Science, 2019, 280, 297-304.	3.6	6
20	Maize E2F transcription factors. Expression, association to promoters of S-phase genes and interaction with the RBR1 protein in chromatin during seed germination. Plant Science, 2020, 296, 110491.	3.6	5
21	Two cyclin Bs are differentially modulated by glucose and sucrose during maize germination. Biochimie, 2021, 182, 108-119.	2.6	5
22	Phytotoxicity of Sicyos deppei during tomato germination and its effects on the role of ABA and cell wall enzymes. Botanical Sciences, 2015, 93, 771-781.	0.8	4
23	Cyclins D, phytoregulators and cell cycle onset in germinating maize. Plant Signaling and Behavior, 2008, 3, 578-579.	2.4	2