## Zachary C K Hawes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9123016/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effects of spatial training on mathematics performance: A meta-analysis Developmental Psychology, 2022, 58, 112-137.                                                                                                                | 1.6 | 46        |
| 2  | Disentangling the individual and contextual effects of math anxiety: A global perspective. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                            | 7.1 | 15        |
| 3  | Spatial thinking as the missing piece in mathematics curricula. Npj Science of Learning, 2022, 7, .                                                                                                                                 | 2.8 | 7         |
| 4  | Symbols Are Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-Numerical<br>Magnitude Processing in the Human Brain. Cerebral Cortex Communications, 2021, 2, tgab048.                                             | 1.6 | 6         |
| 5  | Integrating numerical cognition research and mathematics education to strengthen the teaching and learning of early number. British Journal of Educational Psychology, 2021, 91, 1073-1109.                                         | 2.9 | 4         |
| 6  | Exploring the Implementation of Early Math Assessments in Kindergarten Classrooms: A<br><scp>Researchâ€Practice</scp> Collaboration. Mind, Brain, and Education, 2021, 15, 311-321.                                                 | 1.9 | 1         |
| 7  | Enhancing spatial skills through mechanical problem solving. Learning and Instruction, 2021, 75, 101496.                                                                                                                            | 3.2 | 4         |
| 8  | Effects of a Teacherâ€Designed and Teacherâ€Led Numerical Board Game Intervention: A Randomized<br>Controlled Study with 4†to 6â€Yearâ€Olds. Mind, Brain, and Education, 2020, 14, 71-80.                                           | 1.9 | 5         |
| 9  | The central position of education in knowledge mobilization: insights from network analyses of spatial reasoning research across disciplines. Scientometrics, 2020, 125, 2323-2347.                                                 | 3.0 | 0         |
| 10 | What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin and Review, 2020, 27, 465-482.                                                           | 2.8 | 76        |
| 11 | Why Educational Neuroscience Needs Educational and School Psychology to Effectively Translate Neuroscience to Educational Practice. Frontiers in Psychology, 2020, 11, 618449.                                                      | 2.1 | 20        |
| 12 | Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions<br>associated with symbolic number, arithmetic, and mental rotation. Neuroscience and Biobehavioral<br>Reviews, 2019, 103, 316-336. | 6.1 | 131       |
| 13 | Relations between numerical, spatial, and executive function skills and mathematics achievement: A<br>latent-variable approach. Cognitive Psychology, 2019, 109, 68-90.                                                             | 2.2 | 100       |
| 14 | What explains sex differences in math anxiety? A closer look at the role of spatial processing.<br>Cognition, 2019, 182, 193-212.                                                                                                   | 2.2 | 42        |
| 15 | Kindergarten children's symbolic number comparison skills relates to 1st grade mathematics<br>achievement: Evidence from a two-minute paper-and-pencil test. Learning and Instruction, 2019, 59,<br>21-33.                          | 3.2 | 30        |
| 16 | Spatial Skills Framework for Young Engineers. Early Mathematics Learning and Development, 2018, ,<br>53-81.                                                                                                                         | 0.3 | 7         |
| 17 | Understanding gaps in research networks: using "spatial reasoning―as a window into the importance<br>of networked educational research. Educational Studies in Mathematics, 2017, 95, 143-161.                                      | 2.8 | 42        |
| 18 | Multidisciplinary Perspectives on a Video Case of Children Designing and Coding for Robotics.<br>Canadian Journal of Science, Mathematics and Technology Education, 2017, 17, 165-178                                               | 1.0 | 6         |

ZACHARY C K HAWES

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Enhancing Children's Spatial and Numerical Skills through a Dynamic Spatial Approach to Early<br>Geometry Instruction: Effects of a 32-Week Intervention. Cognition and Instruction, 2017, 35, 236-264.                 | 2.9 | 100       |
| 20 | Mental Rotation With Tangible Threeâ€Dimensional Objects: A New Measure Sensitive to Developmental<br>Differences in 4―to 8‥earâ€Old Children. Mind, Brain, and Education, 2015, 9, 10-18.                              | 1.9 | 78        |
| 21 | The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it?. ZDM - International Journal on Mathematics Education, 2015, 47, 331-343.         | 2.2 | 63        |
| 22 | Adapting Japanese Lesson Study to enhance the teaching and learning of geometry and spatial reasoning in early years classrooms: a case study. ZDM - International Journal on Mathematics Education, 2015, 47, 377-390. | 2.2 | 44        |
| 23 | Effects of mental rotation training on children's spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 2015, 4, 60-68.                                             | 3.1 | 117       |
| 24 | Choreographing Patterns and Functions. Teaching Children Mathematics, 2012, 19, 302-309.                                                                                                                                | 0.2 | 2         |