Zhenquan Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial kaneoheoic acids A-F from a Hawaiian fungus Fusarium sp. FM701. Phytochemistry, 2021, 181, 112545.	1.4	9
2	Fungal Epithiodiketopiperazines Carrying α,βâ€Polysulfide Bridges from <i>Penicillium steckii</i> YE, and Their Chemical Interconversion. ChemBioChem, 2021, 22, 416-422.	1.3	11
3	Secondary Metabolites from the Leather Coral-Derived Fungal Strain <i>Xylaria</i> sp. FM1005 and Their Glycoprotein IIb/IIIa Inhibitory Activity. Journal of Natural Products, 2021, 84, 466-473.	1.5	13
4	Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell, 2021, 184, 943-956.e18.	13.5	94
5	Discovery of a highly potent kinase inhibitor capable of overcoming multiple imatinib-resistant ABL mutants for chronic myeloid leukemia (CML). European Journal of Pharmacology, 2021, 897, 173944.	1.7	6
6	Aspochalasin H1: A New Cyclic Aspochalasin from Hawaiian Plant-Associated Endophytic Fungus Aspergillus sp. FT1307. Molecules, 2021, 26, 4239.	1.7	8
7	Assessing the Performance of Traveling-salesman based Automated Path Searching (TAPS) on Complex Biomolecular Systems. Journal of Chemical Theory and Computation, 2021, 17, 5301-5311.	2.3	8
8	Discovery of 6′-chloro-N-methyl-5'-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-12 as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. European Journal of Medicinal Chemistry, 2020, 188, 112012.	27) 2.6	13
9	Discovery of (E)-N-(4-methyl-5-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thiazol-2-yl)-2-(4-methylpiperazin-1-yl)acetamide (IHMT-TRK-284) as a novel orally available type II TRK kinase inhibitor capable of overcoming multiple resistant mutants. European Journal of Medicinal Chemistry, 2020, 207, 112744	2.6	12
10	Discovery of (<i>S</i>)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidin-1-yl)propyl)-3-cy (IHMT-PI3Kδ-372) as a Potent and Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. Journal of Medicinal Chemistry, 2020, 63, 13973-13993.	vclopropyl 2.9	-5-fluoroquii 12
11	NF-κB Inhibitory and Antibacterial Helvolic and Fumagillin Derivatives from <i>Aspergillus terreus</i> . Journal of Natural Products, 2020, 83, 730-737.	1.5	20
12	Tryptoquivalines W and X, two new compounds from a Hawaiian fungal strain and their biological activities. Tetrahedron Letters, 2020, 61, 151730.	0.7	11
13	Repurposing cabozantinib to GISTs: Overcoming multiple imatinib-resistant cKIT mutations including gatekeeper and activation loop mutants in GISTs preclinical models. Cancer Letters, 2019, 447, 105-114.	3.2	13
14	Axitinib overcomes multiple imatinib resistant cKIT mutations including the gatekeeper mutation T670I in gastrointestinal stromal tumors. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591984975.	1.4	3
15	Discovery of 2-(4-Chloro-3-(trifluoromethyl)phenyl)- <i>N</i> -(4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)acetamide (CHMFL-KIT-64) as a Novel Orally Available Potent Inhibitor against Broad-Spectrum Mutants of c-KIT Kinase for Gastrointestinal Stromal Tumors. Journal of Medicinal Chemistry. 2019. 62. 6083-6101.	2.9	17
16	Circumdatin M, a new benzodiazepine alkaloid with a unique pyrimidone-4-pyrone moiety from a Hawaiian marine fungus Aspergillus sp. FM242. Tetrahedron Letters, 2019, 60, 1724-1726.	0.7	14
17	Discovery of (<i>E</i>)- <i>N</i> ¹ -(3-Fluorophenyl)- <i>N</i> ³ -(3-(2-(pyridin-2-yl)vinyl)-1 <i>H</i> -inda (CHMFL-KIT-033) as a Novel c-KIT T670I Mutant Selective Kinase Inhibitor for Gastrointestinal Stromal Tumors (GISTs). Iournal of Medicinal Chemistry. 2019. 62. 5006-5024.	zol-6-yl)m 2.9	alonamide
18	Clavukoellians A–F, Highly Rearranged Nardosinane Sesquiterpenoids with Antiangiogenic Activity from <i>Clavularia koellikeri</i> . Journal of Natural Products, 2019, 82, 1331-1337.	1.5	15

#	Article	IF	CITATIONS
19	Discovery and characterization of a novel highly potent and selective type II native and drug-resistant V299L mutant BCR-ABL inhibitor (CHMFL-ABL-039) for Chronic Myeloid Leukemia (CML). Cancer Biology and Therapy, 2019, 20, 877-885.	1.5	6
20	Discovery of <i>N</i> -(4-(6-Acetamidopyrimidin-4-yloxy)phenyl)-2-(2-(trifluoromethyl)phenyl)acetamide (CHMFL-FLT3-335) as a Potent FMS-like Tyrosine Kinase 3 Internal Tandem Duplication (FLT3-ITD) Mutant Selective Inhibitor for Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 2019, 62, 875-892.	2.9	20
21	Discovery of 4-((N-(2-(dimethylamino)ethyl)acrylamido)methyl)-N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)ben (CHMFL-PDGFR-159) as a highly selective type II PDGFRα kinase inhibitor for PDGFRα driving chronic eosinophilic leukemia European Journal of Medicinal Chemistry, 2018, 150, 366-384	zamide 2.6	16
22	Discovery of (E)-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thic (CHMFL-ABL-121) as a highly potent ABL kinase inhibitor capable of overcoming a variety of ABL mutants including T315I for chronic myeloid leukemia. European Journal of Medicinal Chemistry, 2018, 160, 61-81.)propanar 2.6	njde
23	Salviachinensines A–F, Antiproliferative Phenolic Derivatives from the Chinese Medicinal Plant <i>Salvia chinensis</i> . Journal of Natural Products, 2018, 81, 2531-2538.	1.5	16
24	Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetr (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. European Journal of Medicinal Chemistry, 2018, 158, 896-916.	∙ahydro-2⊦ 2.6	l-pyran-4-cai
25	Two new tricycloalternarenes from Hawaiian endophytic fungus Didymella sp. FT433. Tetrahedron Letters, 2018, 59, 3381-3383.	0.7	17
26	Discovery of (S)-2-amino-N-(5-(6-chloro-5-(3-methylphenylsulfonamido)pyridin-3-yl)-4-methylthiazol-2-yl)-3-methylbutanamide (CHMFL-PI3KD-317) as a potent and selective phosphoinositide 3-kinase delta (PI3KÎ) inhibitor. European Journal of Medicinal Chemistry, 2018, 156, 831-846.	2.6	8
27	Discovery of 2-((3-Acrylamido-4-methylphenyl)amino)- <i>N</i> -(2-methyl-5-(3,4,5-trimethoxybenzamido)phenyl)-4-(methylamir (CHMFL-BMX-078) as a Highly Potent and Selective Type II Irreversible Bone Marrow Kinase in the X Chromosome (BMX) Kinase Inhibitor, Journal of Medicinal Chemistry, 2017, 60, 1793-1816.	19)pyrimid	ine-5-carb <mark>o</mark> ×
28	Discovery of N-(3-(5-((3-acrylamido-4-(morpholine-4-carbonyl)phenyl)amino)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-2-methylph (CHMFL-BTK-O1) as a highly selective irreversible Bruton's tyrosine kinase (BTK) inhibitor. European Journal of Medicinal Chemistry, 2017, 131, 107-125.	1enyl)-4-(te 2.6	ert-butyl)ber 18
29	Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design. Trends in Biotechnology, 2017, 35, 559-571.	4.9	30
30	Discovery of 4-Methyl- <i>N</i> -(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((1-nicotinoylpiperidin-4-yl)oxy) (CHMFL-ABL/KIT-155) as a Novel Highly Potent Type II ABL/KIT Dual Kinase Inhibitor with a Distinct Hinge Binding, Journal of Medicinal Chemistry, 2017, 60, 273-289.	benzamid 2.9	e ₁₂
31	Structure-activity relationship investigation for benzonaphthyridinone derivatives as novel potent Bruton's tyrosine kinase (BTK) irreversible inhibitors. European Journal of Medicinal Chemistry, 2017, 137, 545-557.	2.6	16
32	Using <scp>PyMOL</scp> as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1298.	6.2	348
33	Discovery of 1-(4-(4-Amino-3-(4-(2-morpholinoethoxy)phenyl)-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidin-1-yl)phenyl)-3-(5-(<i>t (CHMFL-FLT3-213) as a Highly Potent Type II FLT3 Kinase Inhibitor Capable of Overcoming a Variety of FLT3 Kinase Mutants in FLT3-ITD Positive AML, Journal of Medicinal Chemistry, 2017, 60, 8407-8424.</i>	ert-bu 2.9	tyl)isoxazol-
34	Discovery of N -(5-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-4-methoxy-2-(4-methyl-1,4-diazepan-1-y (CHMFL-ALK/EGFR-050) as a potent ALK/EGFR dual kinase inhibitor capable of overcoming a variety of ALK/EGFR associated drug resistant mutants in NSCLC. European Journal of Medicinal Chemistry, 2017,	l)phenyl)a 2.6	crylamide 38
35	Mechanism of host substrate acetylation by a YopJ family effector. Nature Plants, 2017, 3, 17115.	4.7	50
36	Discovery ofN-(3-((1-Isonicotinoylpiperidin-4-yl)oxy)-4-methylphenyl)-3-(trifluoromethyl)benzamide (CHMFL-KIT-110) as a Selective, Potent, and Orally Available Type II c-KIT Kinase Inhibitor for Gastrointestinal Stromal Tumors (GISTs). Journal of Medicinal Chemistry, 2016, 59, 3964-3979.	2.9	10

Zhenquan Hu

#	Article	IF	CITATIONS
37	Molecular mechanisms of endocrine and metabolic disruption: An in silico study on antitrypanosomal natural products and some derivatives. Toxicology Letters, 2016, 252, 29-41.	0.4	4
38	Discovery of <i>N</i> -((1-(4-(3-(3-((6,7-Dimethoxyquinolin-3-yl)oxy)phenyl)ureido)-2-(trifluoromethyl)phenyl)piperidin-4-yl)me (CHMFL-KIT-8140) as a Highly Potent Type II Inhibitor Capable of Inhibiting the T670I "Gatekeeper―Mutant of cKIT Kinase, lournal of Medicinal Chemistry, 2016, 59, 8456-8472.	thyl)propi	onamide
39	Discovery of 2-((3-Amino-4-methylphenyl)amino)- <i>N</i> -(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid Leukemia. Journal of Medicinal Chemistry. 2016, 59, 1984-2004.)pyrimidin 2.9	ie-5-carboxar 17
40	Discovery and characterization of a novel potent type II native and mutant BCR-ABL inhibitor (CHMFL-074) for Chronic Myeloid Leukemia (CML). Oncotarget, 2016, 7, 45562-45574.	0.8	10
41	W246 ^{6.48} Opens a Gate for a Continuous Intrinsic Water Pathway during Activation of the Adenosineâ€A _{2A} Receptor. Angewandte Chemie - International Edition, 2015, 54, 556-559.	7.2	64
42	OpenVirtualToxLab—A platform for generating and exchanging in silico toxicity data. Toxicology Letters, 2015, 232, 519-532.	0.4	89