Jianwen Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9122711/publications.pdf Version: 2024-02-01

		16451	30922
129	11,159	64	102
papers	citations	h-index	g-index
132	132	132	8928
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy and Environmental Science, 2020, 13, 1429-1461.	30.8	366
2	Air-stable Li ₃ InCl ₆ electrolyte with high voltage compatibility for all-solid-state batteries. Energy and Environmental Science, 2019, 12, 2665-2671.	30.8	345
3	Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy and Environmental Science, 2020, 13, 1318-1325.	30.8	342
4	Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A, 2017, 5, 730-738.	10.3	287
5	Site-Occupation-Tuned Superionic Li _{<i>x</i>} ScCl _{3+<i>x</i>} Halide Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2020, 142, 7012-7022.	13.7	260
6	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 16427-16432.	13.8	232
7	Wetâ€Chemical Synthesis of Hollow Redâ€Phosphorus Nanospheres with Porous Shells as Anodes for Highâ€Performance Lithiumâ€Ion and Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700214.	21.0	213
8	Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochimica Acta, 2019, 304, 370-377.	5.2	207
9	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	30.8	201
10	Synthesis of MoS ₂ @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries. Small, 2016, 12, 2484-2491.	10.0	192
11	Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy, 2019, 57, 230-240.	16.0	190
12	Cobaltâ€Doped SnS ₂ with Dual Active Centers of Synergistic Absorptionâ€Catalysis Effect for High‣ Loading Liâ€5 Batteries. Advanced Functional Materials, 2019, 29, 1806724.	14.9	186
13	A Versatile Sn‣ubstituted Argyrodite Sulfide Electrolyte for All‣olid‣tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	19.5	183
14	An aqueous rechargeable sodium ion battery based on a NaMnO ₂ –NaTi ₂ (PO ₄) ₃ hybrid system for stationary energy storage. Journal of Materials Chemistry A, 2015, 3, 1400-1404.	10.3	179
15	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	17.4	176
16	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	12.8	175
17	Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochimica Acta, 2015, 155, 174-182.	5.2	166
18	Amorphous S-rich S _{1â^'x} Se _x /C (x ≤0.1) composites promise better lithium–sulfur batteries in a carbonate-based electrolyte. Energy and Environmental Science, 2015, 8, 3181-3186.	30.8	164

#	Article	IF	CITATIONS
19	Insight into MoS ₂ –MoN Heterostructure to Accelerate Polysulfide Conversion toward Highâ€Energyâ€Đensity Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003314.	19.5	159
20	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	17.4	154
21	Solidâ€State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfideâ€Based Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900392.	14.9	154
22	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Journal of Materials Chemistry A, 2013, 1, 15292.	10.3	151
23	Nitrogenâ€Doped Grapheneâ€Supported Mixed Transitionâ€Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800595.	19.5	151
24	Manipulating the Redox Kinetics of Li–S Chemistry by Tellurium Doping for Improved Li–S Batteries. ACS Energy Letters, 2018, 3, 420-427.	17.4	146
25	In Situ Li ₃ PS ₄ Solid‣tate Electrolyte Protection Layers for Superior Long‣ife and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	21.0	140
26	An Airâ€Stable and Dendriteâ€Free Li Anode for Highly Stable Allâ€Solidâ€State Sulfideâ€Based Li Batteries. Advanced Energy Materials, 2019, 9, 1902125.	19.5	133
27	Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018, 53, 168-174.	16.0	132
28	Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. CheM, 2018, 4, 372-385.	11.7	128
29	NiS _{1.03} Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries. ACS Nano, 2018, 12, 8277-8287.	14.6	127
30	Li ₁₀ Ge(P _{1–<i>x</i>} Sb <i>_x</i>) ₂ S ₁₂ Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials, 2020, 32, 2664-2672.	6.7	125
31	A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries. ACS Nano, 2016, 10, 2295-2304.	14.6	121
32	Highâ€Performance Li–SeS <i>_x</i> Allâ€6olidâ€6tate Lithium Batteries. Advanced Materials, 2019 31, e1808100.	21.0	121
33	A New Saltâ€Baked Approach for Confining Selenium in Metal Complexâ€Derived Porous Carbon with Superior Lithium Storage Properties. Advanced Functional Materials, 2015, 25, 5229-5238.	14.9	117
34	Toward a remarkable Li-S battery via 3D printing. Nano Energy, 2019, 56, 595-603.	16.0	115
35	Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17864.	6.7	114
36	Bulk Ti ₂ Nb ₁₀ O ₂₉ as long-life and high-power Li-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 17258-17262.	10.3	112

#	Article	IF	CITATIONS
37	Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Materials, 2020, 27, 117-123.	18.0	109
38	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Materials, 2020, 30, 98-103.	18.0	109
39	Graphene–encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li–Se batteries. Nano Energy, 2015, 13, 592-600.	16.0	108
40	Metal Halide Superionic Conductors for All-Solid-State Batteries. Accounts of Chemical Research, 2021, 54, 1023-1033.	15.6	105
41	SnS ₂ - Compared to SnO ₂ -Stabilized S/C Composites toward High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19550-19557.	8.0	102
42	Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li–Se batteries with high performance. Nanoscale, 2014, 6, 12952-12957.	5.6	101
43	A simple melting-diffusing-reacting strategy to fabricate S/NiS ₂ –C for lithium–sulfur batteries. Nanoscale, 2016, 8, 17616-17622.	5.6	100
44	High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy and Environmental Science, 2018, 11, 2828-2832.	30.8	99
45	Graphene-Supported NaTi ₂ (PO ₄) ₃ as a High Rate Anode Material for Aqueous Sodium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1181-A1187.	2.9	98
46	Synthesis of Fe3O4@C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale, 2013, 5, 3627.	5.6	94
47	Electrochemical performance of rod-like Sb–C composite as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3276-3280.	10.3	94
48	Origin of Superionic Li ₃ Y _{1–<i>x</i>} In _{<i>x</i>} Cl ₆ Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.	9.1	94
49	A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science Advances, 2021, 7, eabh1896.	10.3	93
50	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie, 2019, 131, 16579-16584.	2.0	92
51	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	8.6	90
52	Porous TiNb2O7 Nanospheres as ultra Long-life and High-power Anodes for Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 456-462.	5.2	83
53	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ€ Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	State 21.0	82
54	Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy, 2020, 76, 105015.	16.0	80

#	Article	IF	CITATIONS
55	Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. ACS Energy Letters, 2020, 5, 1243-1251.	17.4	80
56	Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano Energy, 2020, 69, 104396.	16.0	76
57	Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Materials, 2019, 23, 587-593.	18.0	73
58	Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance. Chemistry of Materials, 2015, 27, 4156-4164.	6.7	70
59	MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Advances, 2013, 3, 10001.	3.6	69
60	Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by <i>In Situ</i> and <i>Operando</i> Synchrotron X-ray Analytical Techniques. Chemistry of Materials, 2020, 32, 7019-7027.	6.7	69
61	Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2728.	10.3	68
62	One-step thermolysis synthesis of two-dimensional ultrafine Fe ₃ O ₄ particles/carbon nanonetworks for high-performance lithium-ion batteries. Nanoscale, 2016, 8, 4733-4741.	5.6	67
63	A potential pyrrhotite (Fe ₇ S ₈) anode material for lithium storage. RSC Advances, 2015, 5, 14828-14831.	3.6	65
64	Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy, 2020, 73, 104836.	16.0	65
65	Optimization of Microporous Carbon Structures for Lithium–Sulfur Battery Applications in Carbonateâ€Based Electrolyte. Small, 2017, 13, 1603533.	10.0	64
66	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	19.5	64
67	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€6olidâ€6tate Batteries. Advanced Energy Materials, 2021, 11, 2100210.	19.5	63
68	Layer structured α-FeSe: A potential anode material for lithium storage. Electrochemistry Communications, 2014, 38, 124-127.	4.7	62
69	Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Research, 2015, 8, 1497-1504.	10.4	62
70	Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. Journal of Materials Chemistry A, 2016, 4, 856-860.	10.3	62
71	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â^'2} /20 mAh cm ^{â^'2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	19.5	62
72	Nanoporous silicon prepared through air-oxidation demagnesiation of Mg ₂ Si and properties of its lithium ion batteries. Chemical Communications, 2015, 51, 7230-7233.	4.1	61

#	Article	IF	CITATIONS
73	Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Liâ€Metal in Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2021, 11, 2101915.	19.5	61
74	Synthesis of nanorod-FeP@C composites with hysteretic lithiation in lithium-ion batteries. Dalton Transactions, 2015, 44, 10297-10303.	3.3	58
75	Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 18305-18312.	8.0	58
76	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020, 72, 104686.	16.0	56
77	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solidâ€State Na Metal Batteries. Advanced Functional Materials, 2020, 30, 2001118.	14.9	53
78	High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage. Nanoscale, 2015, 7, 3440-3444.	5.6	51
79	<i>In situ</i> formation of highly controllable and stable Na ₃ PS ₄ as a protective layer for Na metal anode. Journal of Materials Chemistry A, 2019, 7, 4119-4125.	10.3	51
80	Sulfurâ€Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2017, 56, 2937-2941.	13.8	50
81	Highly Stable Halideâ€Electrolyteâ€Based Allâ€Solidâ€State Li–Se Batteries. Advanced Materials, 2022, 34, e2200856.	21.0	50
82	Origin of additional capacities in selenium-based ZnSe@C nanocomposite Li-ion battery electrodes. Electrochemistry Communications, 2016, 65, 44-47.	4.7	49
83	Hydrothermal synthesis of layered Li1.81H0.19Ti2O5·xH2O nanosheets and their transformation to single-crystalline Li4Ti5O12 nanosheets as the anode materials for Li-ion batteries. CrystEngComm, 2012, 14, 6435.	2.6	47
84	The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode. Journal of Power Sources, 2015, 293, 868-875.	7.8	47
85	Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials, 2020, 30, 238-249.	18.0	46
86	Sizeâ€Mediated Recurring Spinel Subâ€nanodomains in Li―and Mnâ€Rich Layered Cathode Materials. Angewandte Chemie - International Edition, 2020, 59, 14313-14320.	13.8	46
87	Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2 batteries. Nano Energy, 2020, 75, 105036.	16.0	45
88	Ferric chlorideâ€Graphite Intercalation Compounds as Anode Materials for Liâ€ion Batteries. ChemSusChem, 2014, 7, 87-91.	6.8	44
89	Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 33, 139-146.	18.0	44
90	A Series of Ternary Metal Chloride Superionic Conductors for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	19.5	42

#	Article	IF	CITATIONS
91	A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries. Journal of Materials Chemistry A, 2020, 8, 278-286.	10.3	41
92	Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries. Nano Energy, 2020, 77, 105097.	16.0	41
93	New Insights into the Highâ€Performance Black Phosphorus Anode for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101259.	21.0	41
94	Solid-state synthesis of uniform Li2MnSiO4/C/graphene composites and their performance in lithium-ion batteries. Journal of Power Sources, 2014, 246, 192-197.	7.8	40
95	A synchronous approach for facile production of Ge–carbon hybrid nanoparticles for high-performance lithium batteries. Chemical Communications, 2015, 51, 3882-3885.	4.1	40
96	Formation of Grapheneâ€Wrapped Nanocrystals at Room Temperature through the Colloidal Coagulation Effect. Particle and Particle Systems Characterization, 2013, 30, 143-147.	2.3	39
97	Fabrication of one-dimensional SnO2/MoO3/C nanostructure assembled of stacking SnO2 nanosheets from its heterostructure precursor and its application in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9784.	10.3	38
98	Solvothermal synthesis of micro-/nanoscale Cu/Li4Ti5O12 composites for high rate Li-ion batteries. Electrochimica Acta, 2014, 123, 346-352.	5.2	38
99	Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy, 2022, 92, 106674.	16.0	36
100	Coordination complex pyrolyzation for the synthesis of nanostructured GeO ₂ with high lithium storage properties. Chemical Communications, 2014, 50, 13956-13959.	4.1	34
101	Stabilizing Sulfur Cathode in Carbonate and Ether Electrolytes: Excluding Long-Chain Lithium Polysulfide Formation and Switching Lithiation/Delithiation Route. Chemistry of Materials, 2019, 31, 2002-2009.	6.7	32
102	Recycling chicken eggshell membranes for high-capacity sodium battery anodes. RSC Advances, 2014, 4, 50950-50954.	3.6	31
103	Multiphase Ge-based Ge/FeGe/FeGe2/C composite anode for high performance lithium ion batteries. Electrochimica Acta, 2017, 253, 522-529.	5.2	27
104	A Composite Structure of Cu ₃ Ge/Ge/C Anode Promise Better Rate Property for Lithium Battery. Small, 2016, 12, 6024-6032.	10.0	26
105	MoO 2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. Electrochimica Acta, 2016, 213, 416-422.	5.2	26
106	Low temperature chemical reduction of fusional sodium metasilicate nonahydrate into a honeycomb porous silicon nanostructure. Chemical Communications, 2014, 50, 6856.	4.1	25
107	Uniformly dispersed Sn-MnO@C nanocomposite derived from MnSn(OH)6 precursor as anode material for lithium-ion batteries. Electrochimica Acta, 2014, 121, 21-26.	5.2	25
108	Bi2S3 in-situ formed in molten S environment stabilized sulfur cathodes for high-performance lithium-sulfur batteries. Journal of Power Sources, 2016, 329, 379-386.	7.8	24

#	Article	IF	CITATIONS
109	Comparison between SnSb–C and Sn–C composites as anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 62301-62307.	3.6	23
110	Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries. Dalton Transactions, 2018, 47, 7402-7406.	3.3	22
111	Fastâ€Charging Halideâ€Based Allâ€Solidâ€State Batteries by Manipulation of Current Collector Interface. Advanced Functional Materials, 2022, 32, .	14.9	20
112	Trace Fe ³⁺ mediated synthesis of LiFePO ₄ micro/nanostructures towards improved electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 456-463.	3.6	17
113	Totally compatible P4S10+n cathodes with self-generated Li+ pathways for sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 28, 325-333.	18.0	17
114	Facile formation of graphene-encapsulated α-Fe2O3 nanorice as enhanced anode materials for lithium storage. Electrochimica Acta, 2013, 114, 779-784.	5.2	16
115	One-pot hydrothermal synthesis of peony-like Ag/Ag _{0.68} V ₂ O ₅ hybrid as high-performance anode and cathode materials for rechargeable lithium batteries. Nanoscale, 2014, 6, 5239-5244.	5.6	15
116	Porous silicon nano-aggregate from silica fume as an anode for high-energy lithium-ion batteries. RSC Advances, 2016, 6, 30577-30581.	3.6	15
117	Stable Cycling of Fe ₂ O ₃ Nanorice as an Anode through Electrochemical Porousness and the Solid–Electrolyte Interphase Thermolysis Approach. ChemPlusChem, 2014, 79, 143-150.	2.8	14
118	Synthesis of a novel carbon network-supported Fe3O4@C composite and its applications in high-power lithium-ion batteries. Electrochimica Acta, 2013, 111, 809-813.	5.2	13
119	Sn nanoparticles uniformly dispersed in N-doped hollow carbon nanospheres as anode for lithium-ion batteries. Materials Letters, 2016, 184, 332-335.	2.6	13
120	Realizing Highâ€Performance Liâ€5 Batteries through Additive Manufactured and Chemically Enhanced Cathodes. Small Methods, 2021, 5, e2100176.	8.6	12
121	Rational design of SnO2 aggregation nanostructure with uniform pores and its supercapacitor application. Journal of Materials Science: Materials in Electronics, 2015, 26, 6143-6147.	2.2	10
122	Sizeâ€Mediated Recurring Spinel Subâ€nanodomains in Li―and Mnâ€Rich Layered Cathode Materials. Angewandte Chemie, 2020, 132, 14419-14426.	2.0	9
123	Synchronously synthesized Si@C composites through solvothermal oxidation of Mg ₂ Si as lithium ion battery anode. RSC Advances, 2015, 5, 71355-71359.	3.6	8
124	Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chemistry of Materials, 2021, 33, 2029-2036.	6.7	8
125	Facile synthesis and electrochemistry of a new cubic rocksalt Li _x V _y O ₂ (x = 0.78, y = 0.75) electrode material. Journal of Materials Chemistry A, 2017, 5, 5148-5155.	10.3	7
126	A liquid-free poly(butylene oxide) electrolyte for near-room-temperature and 4-V class all-solid-state lithium batteries. Nano Energy, 2021, 90, 106566.	16.0	7

#	Article	IF	CITATIONS
127	Sulfurâ€Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie, 2017, 129, 2983-2987.	2.0	6

Rücktitelbild: Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5