
Igor Chybicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9122581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous Estimation of Null Alleles and Inbreeding Coefficients. Journal of Heredity, 2009, 100, 106-113.	1.0	535
2	Using Genetic Markers to Directly Estimate Gene Flow and Reproductive Success Parameters in Plants on the Basis of Naturally Regenerated Seedlings. Genetics, 2006, 173, 363-372.	1.2	108
3	Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity, 2011, 107, 589-600.	1.2	76
4	Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Molecular Ecology, 2010, 19, 2137-2151.	2.0	65
5	NM+: software implementing parentageâ€based models for estimating gene dispersal and mating patterns in plants. Molecular Ecology Resources, 2010, 10, 1071-1075.	2.2	60
6	Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. Forest Ecology and Management, 2010, 259, 2151-2159.	1.4	53
7	Nuclear and mitochondrial patterns of introgression into native dark bees (Apis mellifera mellifera) in Poland. Journal of Apicultural Research, 2011, 50, 116-129.	0.7	46
8	Isolation by distance in saproxylic beetles may increase with niche specialization. Journal of Insect Conservation, 2013, 17, 219-233.	0.8	44
9	CAUTIONS ON DIRECT GENE FLOW ESTIMATION IN PLANT POPULATIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 956-963.	1.1	42
10	Presence of Triploids among Oak Species. Annals of Botany, 2007, 99, 959-964.	1.4	42
11	Seeing the forest through the trees: comprehensive inference on individual mating patterns in a mixed stand of Quercus robur and Q. petraea. Annals of Botany, 2013, 112, 561-574.	1.4	35
12	Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. Annals of Botany, 2018, 122, 409-421.	1.4	35
13	Isolation-by-distance within naturally established populations of European beech (<i>Fagus) Tj ETQq1 1 0.7843</i>	14 rgBT /C)verlock 10 Tf
14	NMπ—improved reâ€implementation of NM+, a software for estimating gene dispersal and mating patterns. Molecular Ecology Resources, 2018, 18, 159-168.	2.2	26
15	No reduction in genetic diversity of Swiss stone pine (Pinus cembra L.) in Tatra Mountains despite high fragmentation and small population size. Conservation Genetics, 2014, 15, 1433-1445.	0.8	25
16	Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape. Journal of Insect Conservation, 2015, 19, 567-580.	0.8	25
17	Chloroplast microsatellites as a tool for phylogeographic studies: the case of white oaks in Poland. IForest, 2015, 8, 765-771.	0.5	22
18	Partial reproductive isolation between European subspecies of honey bees. Apidologie, 2013, 44, 611-619.	0.9	21

IGOR CHYBICKI

#	Article	IF	CITATIONS
19	Clonality as a driver of spatial genetic structure in populations of clonal tree species. Journal of Plant Research, 2015, 128, 731-745.	1.2	19
20	Variable rates of random genetic drift in protected populations of English yew: implications for gene pool conservation. Conservation Genetics, 2012, 13, 899-911.	0.8	18
21	Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus <i>Laccaria amethystina</i> clustered in two genetic groups. Molecular Ecology, 2012, 21, 2116-2129.	2.0	18
22	PCR multiplexing of nuclear microsatellite loci inQuercus species. Plant Molecular Biology Reporter, 2005, 23, 121-128.	1.0	14
23	Gene Flow, Spatial Structure, Local Adaptation, and Assisted Migration in Trees. , 2012, , 71-116.		14
24	The evolutionary heritage and ecological uniqueness of Scots pine in the Caucasus ecoregion is at risk of climate changes. Scientific Reports, 2021, 11, 22845.	1.6	14
25	Population at the edge: increased divergence but not inbreeding towards northern range limit in Acer campestre. Tree Genetics and Genomes, 2014, 10, 1739-1753.	0.6	13
26	Climatic oscillations in Quaternary have shaped the co-evolutionary patterns between the Norway spruce and its host-associated herbivore. Scientific Reports, 2020, 10, 16524.	1.6	13
27	Genetic evidence of reproductive isolation in a remote enclave of Quercus pubescens in the presence of cross-fertile species. Plant Systematics and Evolution, 2012, 298, 1045-1056.	0.3	12
28	Relative strength of fine-scale spatial genetic structure in paternally vs biparentally inherited DNA in a dioecious plant depends on both sex proportions and pollen-to-seed dispersal ratio. Heredity, 2016, 117, 449-459.	1.2	11
29	Spatial Genetic Structure Within Two Contrasting Stands of Scots Pine (Pinus sylvestris L.). Silvae Genetica, 2008, 57, 193-202.	0.4	11
30	Assessment of genetic diversity in two-species oak seed stands and their progeny populations. Scandinavian Journal of Forest Research, 2012, 27, 2-9.	0.5	10
31	Phenological match drives pollenâ€mediated gene flow in a temporally dimorphic tree. Plant Biology, 2018, 20, 93-100.	1.8	10
32	Gene flow and reproductive success in ash (Fraxinus excelsior L.) in the face of ash dieback: restoration and conservation. Annals of Forest Science, 2021, 78, 1.	0.8	10
33	Note on the Applicability of the F-model in Analysis of Pollen Pool Heterogeneity. Journal of Heredity, 2013, 104, 578-585.	1.0	8
34	Bayesian approach reveals confounding effects of population size and seasonality on outcrossing rates in a fragmented subalpine conifer. Tree Genetics and Genomes, 2014, 10, 1723-1737.	0.6	7
35	Bayesian quantification of ecological determinants of outcrossing in natural plant populations: Computer simulations and the case study of biparental inbreeding in English yew. Molecular Ecology, 2019, 28, 4077-4096.	2.0	6
36	CAUTIONS ON DIRECT GENE FLOW ESTIMATION IN PLANT POPULATIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 956.	1.1	3

IGOR CHYBICKI

#	Article	lF	CITATIONS
37	Identification of determinants of pollen donor fecundity using the hierarchical neighborhood model. Molecular Ecology Resources, 2021, 21, 781-800.	2.2	3
38	Genetic diversity of Dactylorhiza incarnata (Orchidaceae) in northern Poland. Acta Societatis Botanicorum Poloniae, 2016, 85, .	0.8	3
39	Trunk perimeter correlates with genetic bottleneck intensity and the level of genetic diversity in populations of Taxus baccata L. Annals of Forest Science, 2021, 78, 1.	0.8	0
40	High genetic diversity promotes a common-garden trial of Quercus robur as a potential seed source. Dendrobiology, 0, 79, 1-9.	0.6	0