Grigorios P Zouros

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/9122454/publications.pdf
Version: 2024-02-01

EM Scattering by Core-Shell Gyroelectric-Isotropic and Isotropic-Gyroelectric BoRs Using the EBCM.
1 IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2022, 7, 117-125.

Allâ "Anisotropic Spheroidal Photonic Antennas: Theory and Modeling. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-12.

An Entire Domain CFVIE-CDSE Method for EM Scattering on Electrically Large Highly Inhomogeneous Gyrotropic Circular Cylinders. IEEE Transactions on Antennas and Propagation, 2021, 69, 2256-2266.

Spherical Optomagnonic Resonators., 2021, , 243-297.

Three-Dimensional Giant Invisibility to Superscattering Enhancement Induced by Zeeman-Split Modes.
ACS Photonics, 2021, 8, 1407-1412.

Complex WGM frequencies of gyroelectric cylindrical resonators. IET Microwaves, Antennas and
Propagation, 2021, 15, 1206-1217.

Active THz metasurfaces for compact isolation. Journal of the Optical Society of America B: Optical
Physics, 2021, 38, C191.

EBCM for Electromagnetic Modeling of Gyrotropic BoRs. IEEE Transactions on Antennas and
Propagation, 2021, 69, 6134-6139.

Cutoff Wavenumbers of Multilayered Cyrotropic Circular Waveguides. IEEE Transactions on
Microwave Theory and Techniques, 2021, 69, 2949-2959.

10 Electromagnetic Scattering by Magnetic Biaxial Cylinders. , 2021, , .

11 Integral Representations for Modeling Core-shell Particle-based Photonics Applications. , 2021, , .
1

12 Garnet Wires as Optomagnonic Cavities. , 2021, , .
o

13 End-fire all-anisotropic transition metal dichalcogenide nanoantennas. Physical Review B, 2021, 104, .
3.2

2

14 Volume Integral Equation Formulation for Electromagnetic Scattering by Highly Inhomogeneous Anisotropic Cylinders. , 2020, , .

Monitoring strong coupling in nonlocal plasmonics with electron spectroscopies. Physical Review B, 2020, 101, .

Magnetic switching of Kerker scattering in spherical microresonators. Nanophotonics, 2020, 9, 4033-4041.

Dyadic Greenâ $€^{T M}$ s Function Studies for the Three-shell Head Model. , 2020, , .

Eigenfrequencies in Gyrotropicâ€"Metallic Cavities. IEEE Microwave and Wireless Components Letters,

25 CCOMP: An efficient algorithm for complex roots computation of determinantal equations. Computer
Physics Communications, 2018, 222, 339-350.

Asymptotic Solution to the Scattering By Anisotropic Spheroids. , 2018, , .
0

Full-wave theory for WGM lasing of fully anisotropic nanoparticles. Journal of Applied Physics, 2018,
124, .
2.5

3

28 Modified Prony Method for Integration of Highly Oscillating Functions. , 2018, , .

29 Integration of Highly Oscillating Functions Using Prony Interpolation. , 2018, , .
5.1

6

On Methods Employing Auxiliary Sources for 2-D Electromagnetic Scattering by Noncircular Shapes.
IEEE Transactions on Antennas and Propagation, 2018, 66, 5443-5452.
5.1

29

CFVIE Formulation for EM Scattering on Inhomogeneous Anisotropicâ€"Metallic Objects. IEEE
Transactions on Antennas and Propagation, 2017, 65, 3788-3793.
5.1

8

34 Efficient complex roots computation for microwave applications. , 2017, , .

35 Complex resonances of composite PEC-gyroelectric resonators using SVIE method. , 2017, , .
-
39 Resonances of uniaxially anisotropic photonic nanoresonators. , 2017, , . 0
40 Alternative orthogonal vector basis functions for solving volume integral equations in
electromagnetic theory. , 2016,..
Acoustic scattering from inhomogeneous spheres with impenetrable cores. Journal of Applied Physics,
2016,119,
42 Electromagnetic scattering by a conducting sphere with anisotropic coating. , 2016, , . 0
43 Scattering by an inhomogeneous gyroelectric shell coating a PEC spherical core. , 2016, , . 1

44	Electromagnetic Scattering by Inhomogeneous Conductingâ€" on Antennas and Propagation, 2016, 64, 4804-4814.
Latest advances in computational electromagnetic solvers for highly inhomogeneous anisotropic objects. $2016, .$.	5.1

Scattering and Radiation by Perturbed Spherical Metallic Bodies of Revolution. IEEE Antennas and
Wireless Propagation Letters, 2016, 15, 1008-1011.

$47 \quad$| Electromagnetic Scattering on Inhomogeneous Gyroelectric Bodies of Revolution. IEEE Transactions |
| :--- |
| on Antennas and Propagation, 2016, 64, 281-286. |

48

Study of radiation characteristics of prolate or oblate spheroidal antennas using shape perturbation
0
method., 2015, , .
O
\square
Asymptotic technique for electromagnetic scattering by perfectly conducting bodies of revolution. ,
0
2015, , .

Efficient Calculation of the Electromagnetic Scattering by Lossless or Lossy, Prolate or Oblate
4.6

9
Dielectric Spheroids. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 864-876.
9

51	Corrections to â€œEM Field Induced in Inhomogeneous Dielectric Spheres by External Sourcesâ€•[Nov 07 3178-3190]. IEEE Transactions on Antennas and Propagation, 2015, 63, 875-876.	5.1	0
52	Electromagnetic Scattering by an Inhomogeneous Cyroelectric Sphere Using Volume Integral Equation and Orthogonal Dini-Type Basis Functions. IEEE Transactions on Antennas and Propagation, 2015, 63, 2665-2676.	5.1	31
53	Fast Solution of the Electromagnetic Scattering by Composite Spheroidalâ€"Spherical and Sphericalâ€"Spheroidal Configurations. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3042-3053.	4.6	4

IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3054-3065.

```
57 Closed-form solution for electromagnetic scattering by a dielectric spheroid coating a metallic

Analytical calculation for cutoff wavenumbers of metallic waveguides with elliptical-circular and circular-elliptical cross section. , 2014, , .
\begin{tabular}{|c|c|c|c|}
\hline 59 & Exact Eigenfrequencies in Concentric Prolate Spheroidal-Spherical Metallic Cavities. IEEE Microwave and Wireless Components Letters, 2014, 24, 821-823. & 3.2 & 4 \\
\hline 60 & Efficient and Accurate Calculation of the Cutoff Wavenumbers of Coaxial Elliptical-Circular and Circular-Elliptical Metallic Waveguides. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2242-2250. & 4.6 & 8 \\
\hline 61 & Study of Convergence, Divergence, and Oscillations in Method-of-Auxiliary-Sources (MAS) and Extended-Integral-Equation (EIE) Solutions to a Simple Cavity Problem. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 2773-2782. & 4.6 & 10 \\
\hline 62 & Exact Cutoff Wavenumbers of Composite Elliptical Metallic Waveguides. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3179-3186. & 4.6 & 7 \\
\hline 63 & An analytical closed-form solution for electromagnetic scattering from a metallic spheroid in terms of spheroidal eigenvectors. , 2013, , . & & 0 \\
\hline
\end{tabular}

Closed-form solution to the scattering by an infinite lossless or lossy elliptic cylinder coating a 64 circular metallic core. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1832.
65 Oblique electromagnetic scattering from lossless or lossy composite elliptical dielectric cylinders.
Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 196.

Exact solution to the scattering by infinitely long composite elliptical dielectric cylinders under oblique illumination. , 2012, , .
o

Exact and Closed-Form Cutoff Wavenumbers of Elliptical Dielectric Waveguides. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2741-2751.
4.6

10

Transverse Electric Scattering on Inhomogeneous Objects: Spectrum of Integral Operator and Preconditioning. SIAM Journal of Scientific Computing, 2012, 34, B226-B246.
2.8

13

Analytical calculation of cutoff wavenumbers of dielectric waveguides with elliptical cross section. , 2012, , .

Scattering by an infinite elliptic dielectric cylinder under oblique illumination., 2011, , .

Electromagnetic scattering by an infinite cylinder of material or metamaterial coating eccentrically a
71 dielectric cylinder. Journal of the Optical Society of America A: Optics and Image Science, and Vision,
1.5 2011, 28, 1076.```

