Wenqi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9121919/publications.pdf

Version: 2024-02-01

			136885	1	68321
55		4,102	32		53
papers		citations	h-index		g-index
	. '				
58		58	58		7319
all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nature Cell Biology, 2015, 17, 490-499.	4.6	411
2	LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nature Cell Biology, 2016, 18, 431-442.	4.6	239
3	RIF1 Counteracts BRCA1-mediated End Resection during DNA Repair. Journal of Biological Chemistry, 2013, 288, 11135-11143.	1.6	235
4	Angiomotin-like Proteins Associate with and Negatively Regulate YAP1. Journal of Biological Chemistry, 2011, 286, 4364-4370.	1.6	225
5	Deubiquitylation and stabilization of PTEN by USP13. Nature Cell Biology, 2013, 15, 1486-1494.	4.6	172
6	PTPN14 is required for the density-dependent control of YAP1. Genes and Development, 2012, 26, 1959-1971.	2.7	166
7	Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Cell Reports, 2015, 13, 524-532.	2.9	160
8	Lnc <scp>RNA</scp> wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO Journal, 2017, 36, 3325-3335.	3.5	139
9	YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Science Advances, 2020, 6, .	4.7	127
10	Defining the Protein–Protein Interaction Network of the Human Hippo Pathway. Molecular and Cellular Proteomics, 2014, 13, 119-131.	2.5	126
11	Proteomic analyses reveal distinct chromatinâ€associated and soluble transcription factor complexes. Molecular Systems Biology, 2015, 11, 775.	3.2	121
12	LncRNA CamK-A Regulates Ca2+-Signaling-Mediated Tumor Microenvironment Remodeling. Molecular Cell, 2018, 72, 71-83.e7.	4.5	119
13	SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nature Communications, 2018, 9, 2269.	5.8	117
14	FOXKs Promote Wnt/ \hat{l}^2 -Catenin Signaling by Translocating DVL into the Nucleus. Developmental Cell, 2015, 32, 707-718.	3.1	106
15	Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes and Development, 2015, 29, 157-170.	2.7	103
16	Whole-genome screening identifies proteins localized to distinct nuclear bodies. Journal of Cell Biology, 2013, 203, 149-164.	2.3	100
17	Recent progress in mass spectrometry proteomics for biomedical research. Science China Life Sciences, 2017, 60, 1093-1113.	2.3	97
18	LIG4 mediates Wnt signalling-induced radioresistance. Nature Communications, 2016, 7, 10994.	5.8	86

#	Article	IF	Citations
19	Alpha Thalassemia/Mental Retardation Syndrome X-linked Gene Product ATRX Is Required for Proper Replication Restart and Cellular Resistance to Replication Stress. Journal of Biological Chemistry, 2013, 288, 6342-6350.	1.6	83
20	Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology, 2016, 64, 1757-1772.	3.6	79
21	Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Molecular Cell, 2018, 72, 328-340.e8.	4.5	74
22	A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Research, 2021, 31, 1088-1105.	5.7	72
23	Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nature Metabolism, 2021, 3, 90-106.	5.1	71
24	Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Reports, 2017, 20, 737-749.	2.9	69
25	TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/ \hat{l}^2 -catenin signalling. Nature Cell Biology, 2018, 20, 1421-1433.	4.6	64
26	PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nature Communications, 2016, 7, 10633.	5.8	63
27	Centrosome separation driven by actin-microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin. Journal of Cell Science, 2008, 121, 1334-1343.	1.2	59
28	Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discovery, 2015, 1, 15019.	3.1	59
29	Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biology, 2011, 12, 49.	3.0	57
30	Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family. Molecular and Cellular Proteomics, 2016, 15, 3030-3044.	2.5	41
31	Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via β-catenin. Nature Cell Biology, 2018, 20, 1303-1314.	4.6	38
32	PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Molecular Cell, 2021, 81, 1698-1714.e6.	4.5	35
33	Proteomic Analysis of the Human Cyclin-dependent Kinase Family Reveals a Novel CDK5 Complex Involved in Cell Growth and Migration. Molecular and Cellular Proteomics, 2014, 13, 2986-3000.	2.5	34
34	MAP4K Interactome Reveals STRN4 as a Key STRIPAK Complex Component in Hippo Pathway Regulation. Cell Reports, 2020, 32, 107860.	2.9	34
35	Hippo signaling dysfunction induces cancer cell addiction to YAP. Oncogene, 2018, 37, 6414-6424.	2.6	31
36	Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway. Molecular and Cellular Proteomics, 2016, 15, 1299-1308.	2.5	28

#	Article	IF	CITATIONS
37	FOXR2 Interacts with MYC to Promote Its Transcriptional Activities and Tumorigenesis. Cell Reports, 2016, 16, 487-497.	2.9	28
38	Elucidation of <scp>WW</scp> domain ligand binding specificities in the Hippo pathway reveals <scp>STXBP</scp> 4 as <scp>YAP</scp> inhibitor. EMBO Journal, 2020, 39, e102406.	3.5	23
39	MTR120/KIAA1383, a novel microtubule-associated protein, promotes microtubule stability and ensures cytokinesis. Journal of Cell Science, 2013, 126, 825-837.	1.2	22
40	Low-density-lipoprotein-receptor-related protein 1 mediates Notch pathway activation. Developmental Cell, 2021, 56, 2902-2919.e8.	3.1	22
41	The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1. Nature Cell Biology, 2022, 24, 74-87.	4.6	22
42	From pathways to networks: Connecting dots by establishing protein–protein interaction networks in signaling pathways using affinity purification and mass spectrometry. Proteomics, 2015, 15, 188-202.	1.3	20
43	Regulation of in vivo dynein force production by CDK5 and 14-3-3 $\hat{l}\mu$ and KIAA0528. Nature Communications, 2019, 10, 228.	5.8	19
44	Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling. Molecular and Cellular Proteomics, 2017, 16, 594-607.	2.5	13
45	Systematic analysis of the Hippo pathway organization and oncogenic alteration in evolution. Scientific Reports, 2020, 10, 3173.	1.6	13
46	Interactome Analysis of Human Phospholipase D and Phosphatidic Acid-Associated Protein Network. Molecular and Cellular Proteomics, 2022, 21, 100195.	2.5	13
47	Angiomotin-like 2 interacts with and negatively regulates AKT. Oncogene, 2017, 36, 4662-4669.	2.6	10
48	Protocol for establishing a protein-protein interaction network using tandem affinity purification followed by mass spectrometry in mammalian cells. STAR Protocols, 2022, 3, 101569.	0.5	6
49	Significance of long nonâ€coding RNA AGPG for the metabolism of esophageal cancer. Cancer Communications, 2020, 40, 313-315.	3.7	3
50	Energy crisis and the Hippo pathway. Cell Cycle, 2015, 14, 1995-1996.	1.3	2
51	Phosphatidic acid: a lipid regulator of the Hippo pathway. Molecular and Cellular Oncology, 2019, 6, 1558683.	0.3	2
52	Editorial: A Hippo's View: From Molecular Basis to Translational Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 729155.	1.8	2
53	Putting a leash on Hippo. Nature Chemical Biology, 0, , .	3.9	1
54	Foxh1 engages in chromatin regulation revealed by protein interactome analyses. Development Growth and Differentiation, 0 , , .	0.6	1

#	Article	IF	CITATIONS
55	Functional interplay between the Hippo pathway and heavy metals. Molecular and Cellular Oncology, 2022, 9, 2061297.	0.3	0