
Monica Passananti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9121735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From plastic-waste to H2: A first approach to the electrochemical reforming of dissolved Poly(methyl) Tj ETQq1	10,784314 3.8	4 rgBT /Over
2	A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 2022, 15, 11-19.	1.2	7
3	Separation of isomers using a differential mobility analyser (DMA): Comparison of experimental vs modelled ion mobility. Talanta, 2022, 243, 123339.	2.9	7
4	Toward Large-Scale Autonomous Marine Pollution Monitoring. IEEE Internet of Things Magazine, 2021, 4, 40-45.	2.0	12
5	The role of direct photolysis in the photodegradation of the herbicide bentazone in natural surface waters. Chemosphere, 2020, 246, 125705.	4.2	26
6	Highly oxygenated organic molecule cluster decomposition in atmospheric pressure interface time-of-flight mass spectrometers. Atmospheric Measurement Techniques, 2020, 13, 3581-3593.	1.2	4
7	Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem. Sustainability, 2020, 12, 7327.	1.6	66
8	Degradation of nanoplastics in the environment: Reactivity and impact on atmospheric and surface waters. Science of the Total Environment, 2020, 742, 140413.	3.9	51
9	Photochemistry of the Cloud Aqueous Phase: A Review. Molecules, 2020, 25, 423.	1.7	32
10	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
11	PENGUIN. , 2020, , .		7
12	Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation. Atmospheric Chemistry and Physics, 2019, 19, 9753-9768.	1.9	49
13	How well can we predict cluster fragmentation inside a mass spectrometer?. Chemical Communications, 2019, 55, 5946-5949.	2.2	43
14	Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone. Physical Chemistry Chemical Physics, 2019, 21, 20613-20627.	1.3	15
15	Modeling on Fragmentation of Clusters inside a Mass Spectrometer. Journal of Physical Chemistry A, 2019, 123, 611-624.	1.1	32
16	Ecotoxic effects of loratadine and its metabolic and light-induced derivatives. Ecotoxicology and Environmental Safety, 2019, 170, 664-672.	2.9	16
17	Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation. Journal of Physical Chemistry A, 2018, 122, 4717-4729.	1.1	32
18	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164

Monica Passananti

#	Article	IF	CITATIONS
19	Imaging Molecular Reaction and Diffusion in Organic Aerosol Particles. Microscopy and Microanalysis, 2018, 24, 496-497.	0.2	0
20	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
21	Fatty Acid Surfactant Photochemistry Results in New Particle Formation. Scientific Reports, 2017, 7, 12693.	1.6	37
22	Diamines Can Initiate New Particle Formation in the Atmosphere. Journal of Physical Chemistry A, 2017, 121, 6155-6164.	1.1	72
23	Tryptophan and tryptophan-like substances in cloud water: Occurrence and photochemical fate. Atmospheric Environment, 2016, 137, 53-61.	1.9	25
24	Siderophores in Cloud Waters and Potential Impact on Atmospheric Chemistry: Photoreactivity of Iron Complexes under Sun-Simulated Conditions. Environmental Science & Technology, 2016, 50, 9324-9332.	4.6	33
25	Atmospheric photochemistry at a fatty acid–coated air-water interface. Science, 2016, 353, 699-702.	6.0	133
26	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long hain Alkenes. Angewandte Chemie, 2016, 128, 10492-10495.	1.6	2
27	Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface. Environmental Science & Technology, 2016, 50, 11041-11048.	4.6	64
28	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long hain Alkenes. Angewandte Chemie - International Edition, 2016, 55, 10336-10339.	7.2	63
29	SO ₂ Uptake on Oleic Acid: A New Formation Pathway of Organosulfur Compounds in the Atmosphere. Environmental Science and Technology Letters, 2016, 3, 67-72.	3.9	56
30	A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station – experimental versus modelled formation rates. Atmospheric Chemistry and Physics, 2015, 15, 9191-9202.	1.9	50
31	Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface. Journal of the American Chemical Society, 2015, 137, 8348-8351.	6.6	97
32	Photochemical fate and eco-genotoxicity assessment of the drug etodolac. Science of the Total Environment, 2015, 518-519, 258-265.	3.9	16
33	Photochemical Behaviour of Carbamates Structurally Related to Herbicides in Aqueous Media: Nucleophilic Solvent Trapping versus Radical Reactions. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	4
34	Chlorpropham and phenisopham: phototransformation and ecotoxicity of carbamates in the aquatic environment. Environmental Sciences: Processes and Impacts, 2014, 16, 823-831.	1.7	9
35	Fe(III)–EDDS complex in Fenton and photo-Fenton processes: from the radical formation to the degradation of a target compound. Environmental Science and Pollution Research, 2014, 21, 12154-12162.	2.7	59
36	Photoenhanced transformation of nicotine in aquatic environments: Involvement of naturally occurring radical sources. Water Research, 2014, 55, 106-114.	5.3	32

#	Article	IF	CITATIONS
37	The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation inÂmimic and natural waters. Water Research, 2013, 47, 5422-5430.	5.3	14
38	Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine. Science of the Total Environment, 2012, 426, 132-138.	3.9	29
39	Phototransformation of the drug rivastigmine: Photoinduced cleavage of benzyl-nitrogen sigma bond. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 1-6.	2.0	3
40	Determination of photostability and photodegradation products of indomethacin in aqueous media. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 678-683.	1.4	22
41	Dye-Sensitized Photooxygenation of 2,5-Bis(glycosyl)furans. Letters in Organic Chemistry, 2011, 8, 309-314.	0.2	5