
Charles W Dunnill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9121544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core–shell nanostructures for better thermoelectrics. Materials Advances, 2022, 3, 125-141.	2.6	13
2	Sensors-on-paper: Fabrication of graphite thermal sensor arrays on cellulose paper for large area temperature mapping. HardwareX, 2022, 11, e00252.	1.1	3
3	Photocatalytic Degradation of Rhodamine B Dye and Hydrogen Evolution by Hydrothermally Synthesized NaBH4—Spiked ZnS Nanostructures. Frontiers in Chemistry, 2022, 10, 835832.	1.8	10
4	Reactive Sputtered Ir _{1â^'y} Ni _y O _x Electrocatalysts For The Oxygen Evolution Reaction in Alkaline Media. Journal of the Electrochemical Society, 2022, 169, 076501.	1.3	1
5	Comprehensive Insights into Synthesis, Structural Features, and Thermoelectric Properties of High-Performance Inorganic Chalcogenide Nanomaterials for Conversion of Waste Heat to Electricity. ACS Applied Energy Materials, 2022, 5, 7913-7943.	2.5	14
6	An Easily Constructed and Inexpensive Tool to Evaluate the Seebeck Coefficient. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	2.4	9
7	The Hydrogen Bike: Communicating the Production and Safety of Green Hydrogen. Frontiers in Communication, 2021, 5, .	0.6	2
8	On the initiation of blow-out from cooktop burner jets: A simplified energy-based description for the onset of laminar flame extinction in premixed hydrogen-enriched natural gas (HENG) systems. Fuel, 2021, 294, 120527.	3.4	6
9	Enhanced thermal sensitivity in single metal thermocouple: significance of thickness-engineering of the metal layers. Engineering Research Express, 2021, 3, 035015.	0.8	2
10	Single material thermocouples from graphite traces: Fabricating extremely simple and low cost thermal sensors. Carbon Trends, 2021, 4, 100077.	1.4	14
11	Structural and electronic properties of Cu ₄ O ₃ (paramelaconite): the role of native impurities. Pure and Applied Chemistry, 2021, 93, 1229-1244.	0.9	2
12	Thin-films on cellulose paper to construct thermoelectric generator of promising power outputs suitable for low-grade heat recovery. Materials Today Communications, 2021, 29, 102738.	0.9	13
13	Study of Activity and Super-Capacitance Exhibited by Bifunctional Raney 2.0 Catalyst for Alkaline Water-Splitting Electrolysis. Hydrogen, 2021, 2, 1-17.	1.7	2
14	Apparent disagreement between cyclic voltammetry and electrochemical impedance spectroscopy explained by time-domain simulation of constant phase elements. International Journal of Hydrogen Energy, 2020, 45, 22383-22393.	3.8	10
15	Economical and Facile Route to Produce Gram-Scale and Phase-Selective Copper Sulfides for Thermoelectric Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 14234-14242.	3.2	18
16	Low dimensional nanostructures of fast ion conducting lithium nitride. Nature Communications, 2020, 11, 4492.	5.8	19
17	Thermally stable Pt/Ti mesh catalyst for catalytic hydrogen combustion. International Journal of Hydrogen Energy, 2020, 45, 16851-16864.	3.8	27
18	Woven Stainless-Steel Mesh as a Gas Separation Membrane for Alkaline Water-Splitting Electrolysis. Membranes, 2020, 10, 109.	1.4	2

#	Article	IF	CITATIONS
19	Graphite-loaded cotton wool: A green route to highly-porous and solid graphite pellets for thermoelectric devices. Composites Communications, 2020, 20, 100345.	3.3	20
20	Thermoelectric Paper: Graphite Pencil Traces on Paper to Fabricate a Thermoelectric Generator. Advanced Materials Technologies, 2020, 5, 2000227.	3.0	44
21	First-principle computations of ferromagnetic HgCr2Z4 (ZÂ=ÂS, Se) spinels for spintronic and energy storage system applications. Journal of Materials Research and Technology, 2020, 9, 16159-16166.	2.6	9
22	Photocapacitive CdS/WOx nanostructures for solar energy storage. Scientific Reports, 2019, 9, 11573.	1.6	17
23	Powering the Hydrogen Economy from Waste Heat: A Review of Heatâ€ŧoâ€Hydrogen Concepts. ChemSusChem, 2019, 12, 3882-3895.	3.6	36
24	Raney Nickel 2.0: Development of a high-performance bifunctional electrocatalyst. Electrochimica Acta, 2019, 322, 134687.	2.6	26
25	Development of a Pt/stainless steel mesh catalyst and its application in catalytic hydrogen combustion. International Journal of Hydrogen Energy, 2019, 44, 27094-27106.	3.8	30
26	Study of copper(II) oxide and copper(II) acetate on multiwalled carbon nanotubes by XPS. Surface Science Spectra, 2019, 26, .	0.3	9
27	Enhanced Lifetime Cathode for Alkaline Electrolysis Using Standard Commercial Titanium Nitride Coatings. Processes, 2019, 7, 112.	1.3	13
28	VO ₂ /TiO ₂ bilayer films for energy efficient windows with multifunctional properties. Journal of Materials Chemistry C, 2018, 6, 4485-4493.	2.7	31
29	Hydrogen-enriched natural gas as a domestic fuel: an analysis based on flash-back and blow-off limits for domestic natural gas appliances within the UK. Sustainable Energy and Fuels, 2018, 2, 710-723.	2.5	73
30	Composition analysis of Ta3N5/W18O49 nanocomposite through XPS. Surface Science Spectra, 2018, 25, 024002.	0.3	1
31	Active removal of waste dye pollutants using Ta3N5/W18O49 nanocomposite fibres. Scientific Reports, 2017, 7, 4090.	1.6	29
32	Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. International Journal of Hydrogen Energy, 2017, 42, 23986-23994.	3.8	90
33	Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas. RSC Advances, 2016, 6, 100643-100651.	1.7	161
34	Porous carbons from inverse vulcanised polymers. Microporous and Mesoporous Materials, 2016, 232, 189-195.	2.2	34
35	Enhanced purification of carbon nanotubes by microwave and chlorine cleaning procedures. RSC Advances, 2016, 6, 11895-11902.	1.7	48
36	Assembly of porous hierarchical copolymers/resin proppants: New approaches to smart proppant immobilization via molecular anchors. Journal of Colloid and Interface Science, 2016, 466, 275-283.	5.0	7

#	Article	IF	CITATIONS
37	Copper-complexed isonicotinic acid functionalized aluminum oxide nanoparticles. Main Group Chemistry, 2015, 15, 1-15.	0.4	6
38	Nickel-Doped Ceria Nanoparticles: The Effect of Annealing on Room Temperature Ferromagnetism. Crystals, 2015, 5, 312-326.	1.0	26
39	Nanoparticle–sulphur "inverse vulcanisation―polymer composites. Chemical Communications, 2015, 51, 10467-10470.	2.2	35
40	A microwave cured flux for the adhesion of ceramic particles using silica coated carbon nanotubes. Carbon, 2015, 93, 774-781.	5.4	10
41	pH-responsive octylamine coupling modification of carboxylated aluminium oxide surfaces. Journal of Materials Chemistry A, 2015, 3, 10052-10059.	5.2	33
42	Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis. Nanoscale, 2015, 7, 17735-17744.	2.8	11
43	Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands. Journal of Colloid and Interface Science, 2015, 460, 29-35.	5.0	26
44	Visible Light Photocatalytic Activity in AACVDâ€Prepared Nâ€modified TiO ₂ Thin Films. Chemical Vapor Deposition, 2014, 20, 91-97.	1.4	14
45	UV Blocking Glass: Low Cost Filters for Visible Light Photocatalytic Assessment. International Journal of Photoenergy, 2014, 2014, 1-5.	1.4	8
46	N-doped TiO2 visible light photocatalyst films via a sol–gel route using TMEDA as the nitrogen source. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 281, 27-34.	2.0	37
47	A fast and effective method for N-doping TiO2 by post treatment with liquid ammonia: visible light photocatalysis. Thin Solid Films, 2014, 562, 223-228.	0.8	20
48	Silver enhanced TiO ₂ thin films: photocatalytic characterization using aqueous solutions of tris(hydroxymethyl)aminomethane. Dalton Transactions, 2014, 43, 344-351.	1.6	17
49	Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12, 798-801.	13.3	1,924
50	of a Novel Light-activated Antimicrobial Coating to Disinfect Computer Keyboards in the Clinical Ward Environment. American Journal of Infection Control, 2013, 41, S35-S36.	1.1	1
51	The effect of glove material upon the transfer of methicillin-resistant Staphylococcus aureus to and from a gloved hand. American Journal of Infection Control, 2013, 41, 19-23.	1.1	23
52	Shining light on materials — A self-sterilising revolution. Advanced Drug Delivery Reviews, 2013, 65, 570-580.	6.6	83
53	Calcium phosphate-based materials of natural origin showing photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 6452.	5.2	57
54	Control of ZnO Nanostructures via Vapor Transport. Chemical Vapor Deposition, 2012, 18, 282-288.	1.4	2

#	Article	IF	CITATIONS
55	Incorporation of methylene blue and nanogold into polyvinyl chloride catheters; a new approach for light-activated disinfection of surfaces. Journal of Materials Chemistry, 2012, 22, 15388.	6.7	62
56	Production of Predominantly Anatase Thin Films on Various Grades of Steel and Other Metallic Substrates From TiCl ₄ and Ethyl Acetate by Atmospheric Pressure CVD. Chemical Vapor Deposition, 2012, 18, 133-139.	1.4	15
57	CVD Production of Doped Titanium Dioxide Thin Films. Chemical Vapor Deposition, 2012, 18, 89-101.	1.4	35
58	Silver loaded WO3â^x/TiO2 composite multifunctional thin films. Thin Solid Films, 2012, 520, 5516-5520.	0.8	15
59	The relationship between photocatalytic activity and photochromic state of nanoparticulate silver surface loaded titanium dioxide thin-films. Physical Chemistry Chemical Physics, 2011, 13, 13827.	1.3	36
60	Nitrogen-doped TiO ₂ thin films: photocatalytic applications for healthcare environments. Dalton Transactions, 2011, 40, 1635-1640.	1.6	153
61	Visible light photocatalysts—N-doped TiO2 by sol–gel, enhanced with surface bound silver nanoparticle islands. Journal of Materials Chemistry, 2011, 21, 11854.	6.7	56
62	Nanoparticulate silver coated-titania thin films—Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 113-123.	2.0	69
63	Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films. Thin Solid Films, 2011, 519, 5942-5948.	0.8	28
64	Antimicrobial Activity in Thin Films of Pseudobrookite‣tructured Titanium Oxynitride under UV Irradiation Observed for <i>Escherichia coli</i> . Chemical Vapor Deposition, 2010, 16, 19-22.	1.4	16
65	Sulfur―and Nitrogenâ€Doped Titania Biomaterials via APCVD. Chemical Vapor Deposition, 2010, 16, 50-54.	1.4	34
66	Multifunctional Nanocomposite Thin Films by Aerosolâ€Assisted CVD. Chemical Vapor Deposition, 2010, 16, 220-224.	1.4	28
67	Impaired bacterial attachment to light activated Ni–Ti alloy. Materials Science and Engineering C, 2010, 30, 225-234.	3.8	9
68	Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2, 90-97.	2.8	18
69	Combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of niobium doped anatase; effect of niobium on the conductivity and photocatalytic activity. Journal of Materials Chemistry, 2010, 20, 8336.	6.7	53
70	Combinatorial CVD: New Oxynitride Photocatalysts. ECS Transactions, 2009, 25, 139-154.	0.3	7
71	N-doped Titania Thin Films, Prepared by Atmospheric Pressure Chemical Vapour Deposition: Enhanced Visible Light Photocatalytic Activity and Anti-microbial Effects. ECS Transactions, 2009, 25, 65-72.	0.3	5
72	Combinatorial CVD: New Oxy-nitride Photocatalysts. ECS Transactions, 2009, 25, 1239-1250.	0.3	7

#	Article	IF	CITATIONS
73	Nâ€Doped Titania Thin Films Prepared by Atmospheric Pressure CVD using <i>t</i> â€Butylamine as the Nitrogen Source: Enhanced Photocatalytic Activity under Visible Light. Chemical Vapor Deposition, 2009, 15, 171-174.	1.4	31
74	Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 244-253.	2.0	106
75	Nanoparticulate cerium dioxide and cerium dioxide–titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition. Applied Surface Science, 2009, 256, 852-856.	3.1	18
76	The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption. Physical Chemistry Chemical Physics, 2009, 11, 10513.	1.3	86
77	The role of surfaces in catheter-associated infections. Chemical Society Reviews, 2009, 38, 3435.	18.7	190
78	White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application. Journal of Materials Chemistry, 2009, 19, 8747.	6.7	105
79	Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2â^xO4 (x=Al: 0.00–0.40) synthesized via fumaric acid-assisted sol–gel synthesis for use in lithium rechargeable batteries. Journal of Physics and Chemistry of Solids, 2008, 69, 2082-2090.	1.9	36
80	Studies on chromium/aluminium-doped manganese spinel as cathode materials for lithium-ion batteries—A novel chelated sol–gel synthesis. Journal of Materials Processing Technology, 2008, 208, 520-531.	3.1	41
81	Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCr Mn2â^'O4 (x= 0.00–0.40) via sol–gel synthesis and its electrochemical behaviour for use in Li-ion-batteries. Materials Research Bulletin, 2008, 43, 2119-2129.	2.7	41
82	Nanostructural Evolution: From One-Dimensional Tungsten Oxide Nanowires to Three-Dimensional Ferberite Flowers. Chemistry of Materials, 2008, 20, 5657-5665.	3.2	73
83	Low-Temperature Magnetic Properties of Hematite Nanorods. Chemistry of Materials, 2007, 19, 916-921.	3.2	75
84	Preparation and characterization of tungsten oxynitride nanowires. Journal of Materials Chemistry, 2007, 17, 4436.	6.7	56
85	Single-Step Synthesis and Surface-Assisted Growth of Superconducting TaS2 Nanowires. Angewandte Chemie - International Edition, 2006, 45, 7060-7063.	7.2	30
86	Fabrication of wooden thermoelectric legs to construct a generator. Green Materials, 0, , 1-8.	1.1	2