
Grace M Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9120837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No evidence of widespread algal bloom intensification in hundreds of lakes. Frontiers in Ecology and the Environment, 2022, 20, 16-21.	1.9	23
2	Eutrophicationâ€driven ecoâ€evolutionary dynamics indicated by differences in stoichiometric traits among populations of <i>Daphnia pulicaria</i> . Freshwater Biology, 2022, 67, 353-364.	1.2	3
3	Temporal Coherence Between Lake and Landscape Primary Productivity. Ecosystems, 2021, 24, 502-515.	1.6	8
4	Predicting algal blooms: Are we overlooking groundwater?. Science of the Total Environment, 2021, 769, 144442.	3.9	35
5	Iron availability allows sustained cyanobacterial blooms: a dual-lake case study. Inland Waters, 2021, 11, 417-429.	1.1	4
6	Capturing the spatial variability of algal bloom development in a shallow temperate lake. Freshwater Biology, 2021, 66, 2064-2075.	1.2	12
7	Detecting changes in statistical indicators of resilience prior to algal blooms in shallow eutrophic lakes. Ecosphere, 2020, 11, e03200.	1.0	16
8	Restoration of eutrophic lakes in Iowa, USA. Hydrobiologia, 2020, 847, 4469-4486.	1.0	7
9	Beyond the trends: The need to understand multiannual dynamics in aquatic ecosystems. Limnology and Oceanography Letters, 2020, 5, 281-286.	1.6	11
10	Scaling relationships between lake surface area and catchment area. Aquatic Sciences, 2020, 82, 1.	0.6	9
11	Longâ€ŧerm studies and reproducibility: Lessons from wholeâ€ŀake experiments. Limnology and Oceanography, 2019, 64, S22.	1.6	10
12	Functional shifts in lake zooplankton communities with hypereutrophication. Freshwater Biology, 2019, 64, 608-616.	1.2	22
13	Taxonomic and geographic gaps in understanding the functional effects of imperilled fishes on freshwater ecosystems. Fish and Fisheries, 2019, 20, 795-801.	2.7	1
14	Nonâ€seagrass carbon contributions to seagrass sediment blue carbon. Limnology and Oceanography, 2018, 63, S3.	1.6	62
15	A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems. Scientific Reports, 2018, 8, 15736.	1.6	24
16	Early warning signals precede cyanobacterial blooms in multiple wholeâ€lake experiments. Ecological Monographs, 2018, 88, 188-203.	2.4	54
17	Terrestrial support of lake food webs: Synthesis reveals controls over cross-ecosystem resource use. Science Advances, 2017, 3, e1601765.	4.7	92
18	Reversal of a cyanobacterial bloom in response to early warnings. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 352-357.	3.3	79

GRACE M WILKINSON

#	Article	IF	CITATIONS
19	How Many Limnologists Does It Take to Fix the Plumbing? The Arising Researcher. Bulletin of the Ecological Society of America, 2017, 98, 99-100.	0.2	0
20	Eutrophication of Freshwater and Coastal Ecosystems. , 2017, , 145-152.		7
21	Response of plankton to nutrients, planktivory and terrestrial organic matter: a model analysis of whole″ake experiments. Ecology Letters, 2016, 19, 230-239.	3.0	41
22	Exogenously produced CO ₂ doubles the CO ₂ efflux from three north temperate lakes. Geophysical Research Letters, 2016, 43, 1996-2003.	1.5	46
23	Exploring Trophic Cascades in Lake Food Webs with a Spreadsheet Model. , 2016, , 111-115.		0
24	Resource Use of an Aquacultured Oyster (Crassostrea gigas) in the Reverse Estuary BahÃa San QuintÃn, Baja California, México. Estuaries and Coasts, 2016, 39, 866-874.	1.0	7
25	Altered energy flow in the food web of an experimentally darkened lake. Ecosphere, 2015, 6, 1-23.	1.0	24
26	The Benefits of Student Membership in ASLO. Limnology and Oceanography Bulletin, 2015, 24, 92-93.	0.2	0
27	Big Data on Important Issues: Assessing the Needs of Student and Early Career Aquatic Scientists. Limnology and Oceanography Bulletin, 2015, 24, 77-79.	0.2	1
28	Deuterium as a food source tracer: Sensitivity to environmental water, lipid content, and hydrogen exchange. Limnology and Oceanography: Methods, 2015, 13, 213-223.	1.0	26
29	Physical and biological contributions to metalimnetic oxygen maxima in lakes. Limnology and Oceanography, 2015, 60, 242-251.	1.6	24
30	Use of allochthonous resources by zooplankton in reservoirs. Hydrobiologia, 2015, 758, 257-269.	1.0	16
31	Assigning hydrogen, carbon, and nitrogen isotope values for phytoplankton and terrestrial detritus in aquatic food web studies. Inland Waters, 2014, 4, 233-242.	1.1	25
32	Use of deep autochthonous resources by zooplankton: Results of a metalimnetic addition of ¹³ C to a small lake. Limnology and Oceanography, 2014, 59, 986-996.	1.6	14
33	Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biology, 2013, 58, 2037-2049.	1.2	74
34	Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical Cycles, 2013, 27, 43-51.	1.9	117