S P Jeevan Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9120463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic transesterification of Jatropha oil. Biotechnology for Biofuels, 2009, 2, 1.	6.2	292
2	Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of Botany, 2015, 116, 663-668.	1.4	244
3	Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Research, 2017, 21, 138-147.	2.4	209
4	Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal, 2017, 11, 9.	2.6	167
5	Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. Bioresource Technology, 2016, 214, 386-395.	4.8	144
6	Circular economy aspects of lignin: Towards a lignocellulose biorefinery. Renewable and Sustainable Energy Reviews, 2020, 130, 109977.	8.2	135
7	The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining, 2020, 14, 830-844.	1.9	96
8	A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant. Carbohydrate Polymers, 2016, 150, 359-368.	5.1	91
9	Utilization of Vegetable Wastes for Bioenergy Generation. Agricultural Research, 2012, 1, 213-222.	0.9	83
10	Integrated bioethanol and biomanure production from potato waste. Waste Management, 2016, 49, 320-325.	3.7	77
11	Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresource Technology, 2005, 96, 949-953.	4.8	76
12	Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World Journal of Microbiology and Biotechnology, 2006, 22, 207-212.	1.7	68
13	A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Industrial Crops and Products, 2016, 92, 174-185.	2.5	64
14	Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects. Renewable and Sustainable Energy Reviews, 2019, 101, 548-558.	8.2	59
15	Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass and Bioenergy, 2011, 35, 3584-3591.	2.9	56
16	Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Frontiers in Microbiology, 2021, 12, 658284.	1.5	56
17	Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: A greener and scalable process. Ultrasonics Sonochemistry, 2019, 52, 25-32.	3.8	55
18	Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Advances, 2015, 5, 75281-75291.	1.7	51

#	Article	IF	CITATIONS
19	Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresource Technology, 2017, 245, 530-539.	4.8	51
20	Tannase production by Bacillus licheniformis. Biotechnology Letters, 2000, 22, 767-769.	1.1	49
21	Enzymatic polishing of rice – A new processing technology. LWT - Food Science and Technology, 2008, 41, 2079-2084.	2.5	44
22	Purification and biochemical characterization of a newly produced yellow laccase from Lentinus squarrosulus MR13. 3 Biotech, 2015, 5, 227-236.	1.1	44
23	Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori : An integrated approach. Bioresource Technology, 2017, 238, 502-509.	4.8	44
24	Evaluation of physicochemical properties of enzyme treated brown rice (Part B). LWT - Food Science and Technology, 2008, 41, 2092-2096.	2.5	43
25	Enzyme mediated biomass pretreatment and hydrolysis: a biotechnological venture towards bioethanol production. RSC Advances, 2016, 6, 61301-61311.	1.7	41
26	Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels, 2017, 8, 431-444.	1.4	41
27	A green and sustainable approach on statistical optimization of laccase mediated delignification of sugarcane tops for enhanced saccharification. Journal of Environmental Management, 2018, 217, 700-709.	3.8	41
28	Varietal replacement rate: Prospects and challenges for global food security. Global Food Security, 2020, 25, 100324.	4.0	39
29	Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. Sustainable Chemical Processes, 2013, 1, .	2.3	38
30	Biodiesel from oleaginous microbes: opportunities and challenges. Biofuels, 2019, 10, 45-59.	1.4	38
31	Production and optimization of microbial lipase. Bioprocess and Biosystems Engineering, 1998, 19, 29.	0.5	36
32	Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express, 2021, 11, 36.	1.4	36
33	Nutraceuticals derived from seed storage proteins: Implications for health wellness. Biocatalysis and Agricultural Biotechnology, 2019, 17, 710-719.	1.5	35
34	Optimization of extraction and purification of glucoamylase produced by Aspergillus awamori in solid-state fermentation. Biotechnology and Bioprocess Engineering, 2009, 14, 60-66.	1.4	34
35	Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI Journal, 2011, 10, 85-96.	0.5	34
36	A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech, 2015, 5, 455-463.	1.1	33

#	Article	IF	CITATIONS
37	Enzyme mediated resistant starch production from Indian Fox Nut (Euryale ferox) and studies on digestibility and functional properties. Carbohydrate Polymers, 2020, 237, 116158.	5.1	32
38	Laccase mediated delignification of pineapple leaf waste: an ecofriendly sustainable attempt towards valorization. BMC Chemistry, 2019, 13, 58.	1.6	31
39	Biodepolymerization studies of low rank Indian coals. World Journal of Microbiology and Biotechnology, 2009, 25, 1713-1720.	1.7	28
40	Implications of reactive oxygen and nitrogen species in seed physiology for sustainable crop productivity under changing climate conditions. Current Plant Biology, 2021, 26, 100197.	2.3	27
41	Optimization of lipase production using differential evolution. Biotechnology and Bioprocess Engineering, 2010, 15, 254-260.	1.4	25
42	Phytochemical Profiling of Methanolic Fruit Extract of Gardenia latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity. Plants, 2021, 10, 545.	1.6	24
43	Kinetics of solvent-free geranyl acetate synthesis by <i>Rhizopus oligosporus</i> NRRL 5905 lipase immobilized on to cross-linked silica. Biocatalysis and Biotransformation, 2009, 27, 124-130.	1.1	23
44	Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource Technology, 2016, 212, 47-54.	4.8	23
45	Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Molecular Biology Reports, 2022, 49, 2129-2140.	1.0	23
46	Bioethanol production from cereal crops and lignocelluloses rich agro-residues: prospects and challenges. SN Applied Sciences, 2020, 2, 1.	1.5	22
47	A novel approach for resistant starch production from green banana flour using amylopullulanase. LWT - Food Science and Technology, 2022, 153, 112391.	2.5	21
48	Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production. Biofuels, 2019, 10, 73-80.	1.4	20
49	Continuous cultivation strategy for yeast industrial wastewater-based polyhydroxyalkanoate production. Journal of Bioscience and Bioengineering, 2020, 129, 595-602.	1.1	20
50	Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase. International Journal of Biological Macromolecules, 2015, 81, 560-567.	3.6	19
51	Separate and simultaneous saccharification and fermentation of a pretreated mixture of lignocellulosic biomass for ethanol production. Biofuels, 2019, 10, 61-72.	1.4	19
52	An innovative approach of mixed enzymatic venture for 2G ethanol production from lignocellulosic feedstock. Energy Conversion and Management, 2020, 207, 112504.	4.4	19
53	Peptide enriched functional food adjunct from soy whey: A statistical optimization study. Food Science and Biotechnology, 2013, 22, 65-71.	1.2	18
54	Immunotherapeutics for Covid-19 and post vaccination surveillance. 3 Biotech, 2020, 10, 527.	1.1	17

#	Article	IF	CITATIONS
55	Copolymerization of lactic acid for cost-effective PLA synthesis and studies on its improved characteristics. Food Science and Biotechnology, 2013, 22, 73-77.	1.2	16
56	Microprojectile based particle bombardment in development of transgenic indica rice involving AmSOD gene to impart tolerance to salinity. Plant Gene, 2019, 19, 100183.	1.4	16
57	Enzymatic polishing of cereal grains for improved nutrient retainment. Journal of Food Science and Technology, 2014, 52, 3147-57.	1.4	15
58	Assessment of Genetic Purity in Rice Using Polymorphic SSR Markers and Its Economic Analysis with Grow-Out-Test. Food Analytical Methods, 2021, 14, 856-864.	1.3	15
59	Valorization of citrus lemon wastes through biorefinery approach: An industrial symbiosis. Bioresource Technology Reports, 2021, 15, 100717.	1.5	15
60	Food Biotechnology: A Step Towards Improving Nutritional Quality of Food for Asian Countries. Recent Patents on Biotechnology, 2016, 10, 43-57.	0.4	14
61	Biocontrol potential of <i>Pseudomonas stutzeri</i> endophyte from <i>Withania somnifera</i> (Ashwagandha) seed extract against pathogenic <i>Fusarium oxysporum</i> and <i>Rhizoctonia solani</i> . Archives of Phytopathology and Plant Protection, 2022, 55, 1-18.	0.6	14
62	Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Molecular Biology Reports, 2022, 49, 2579-2589.	1.0	14
63	Enzymatic Peeling of Potato: A Novel Processing Technology. Potato Research, 2015, 58, 301-311.	1.2	12
64	In silico optimization of enzyme mediated debittering of Assam lemon: biochemical and sensory evaluation studies. Journal of Food Science and Technology, 2019, 56, 2233-2243.	1.4	12
65	Biotransformation of hydrolysable tannin to ellagic acid by tannase from <i>Aspergillus awamori</i> . Biocatalysis and Biotransformation, 2017, 35, 27-34.	1.1	11
66	Delineation of Inheritance Pattern of Aleurone Layer Colour Through Chemical Tests in Rice. Rice, 2017, 10, 48.	1.7	11
67	Application of Phenolic Extraction Strategies and Evaluation of the Antioxidant Activity of Peanut Skins as an Agricultural By-product for Food Industry. Food Analytical Methods, 2021, 14, 2051-2062.	1.3	11
68	Yellow Laccase-Mediated Lignin Degradation of Ricinus communis: A Future Agricultural Biomass for Biofuel Production. Agricultural Research, 2015, 4, 309-318.	0.9	10
69	Production of biodiesel utilizing laccase pretreated lignocellulosic waste liquor: An attempt towards cleaner production process. Energy Conversion and Management, 2019, 196, 979-987.	4.4	9
70	A new insight on improved biomethanation using graphene oxide from fermented Assam lemon waste. Fuel, 2022, 309, 122195.	3.4	8
71	Role of Biotechnology in the Exploration of Soil and Plant Microbiomes. , 2020, , 335-355.		7
72	Optimization of lipid enriched biomass production from oleaginous fungus using response surface methodology. Indian Journal of Experimental Biology, 2013, 51, 979-83.	0.5	7

#	Article	IF	CITATIONS
73	Dual enzyme treatment strategy for enhancing resistant starch content of green banana flour and in vitro evaluation of prebiotic effect. LWT - Food Science and Technology, 2022, 160, 113267.	2.5	7
74	Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Molecular Biology Reports, 2022, 49, 4517-4524.	1.0	7
75	Nutrient Enrichment of Organic Manure Through Biotechnological Means. Waste and Biomass Valorization, 2017, 8, 645-657.	1.8	6
76	MODELING AND OPTIMIZATION OF NUTRITIONALLY ENRICHED SOY WHEY GENERATION. Journal of Food Process Engineering, 2011, 34, 1775-1792.	1.5	5
77	Comparative pretreatment method for efficient enzymatic hydrolysis of Salvinia cucullata and sewage treatment in ponds containing this biomass. Clean Technologies and Environmental Policy, 2014, 16, 1787-1794.	2.1	5
78	Oleaginous Lipid: A Drive to Synthesize and Utilize as Biodiesel. Green Energy and Technology, 2020, , 105-129.	0.4	4
79	Apomixis: A Foresight from Genetic Mechanisms to Molecular Perspectives. Botanical Review, The, 2022, 88, 220-256.	1.7	4
80	Non-thermal plasmas for disease control and abiotic stress management in plants. Environmental Chemistry Letters, 2022, 20, 2135-2164.	8.3	4
81	Contribution of Metallic Nanomaterials in Algal Biofuel Production. Environmental Chemistry for A Sustainable World, 2021, , 331-353.	0.3	3
82	Differential Diagnosis and Possible Therapeutics for Coronavirus Disease 2019. Medical Virology, 2020, , 51-71.	2.1	3
83	Bioconversion of waste glycerol for enhanced lipid accumulation in Trichosporon shinodae. Biomass Conversion and Biorefinery, 2023, 13, 15401-15412.	2.9	3
84	Identification and characterization of chickpea genotypes for early flowering and higher seed germination through molecular markers. Molecular Biology Reports, 2022, 49, 6181-6188.	1.0	3
85	Technologies for oil extraction from oilseeds and oleaginous microbes. , 2021, , 243-266.		2
86	An integrated study using ultrasonic-assisted enzymatic extraction of hydrolysates from rice based distillery byproduct and its characterization. Process Biochemistry, 2022, 119, 128-139.	1.8	2
87	An Economic Analysis of Paddy Seed Production in Mau District of Eastern Uttar Pradesh. Journal of Economics Management and Trade, 0, , 45-51.	0.3	1
88	Phylogenomics, Microbiome and Morphological Insights of Truffles: The Tale of a Sensory Stimulating Ectomycorrhizal Filamentous Fungus. , 2022, , 709-730.		1
89	Genome Editing Crops in Food and Futuristic Crops. , 2022, , 401-445.		1
90	Microfluidics in lipid extraction. , 2020, , 21-34.		0

90 Microfluidics in lipid extraction. , 2020, , 21-34.

#	Article	IF	CITATIONS
91	Data on optimization of microprojectile bombardment parameters in development of salinity tolerant transgenic lines. Data in Brief, 2020, 29, 105305.	0.5	0
92	Socio-economic Dynamics of Farmers and Economics of Certified Seed Production of Paddy in Karimnagar District, Telangana. Journal of Economics Management and Trade, 0, , 1-9.	0.3	0
93	An Economic Analysis of Mung Bean Seed Production Technology in Mau District of Eastern Uttar Pradesh. Legume Research, 2019, , .	0.0	0