
Miroslav Svoboda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9120433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tree-Related Microhabitats Follow Similar Patterns but are More Diverse in Primary Compared to Managed Temperate Mountain Forests. Ecosystems, 2022, 25, 712-726.	1.6	12
2	Factors influencing the rate of formation of treeâ€related microhabitats and implications for biodiversity conservation and forest management. Journal of Applied Ecology, 2022, 59, 492-503.	1.9	21
3	Trends in climatically driven extreme growth reductions of <i>Picea abies</i> and <i>Pinus sylvestris</i> in Central Europe. Global Change Biology, 2022, 28, 557-570.	4.2	13
4	Historical mixed-severity disturbances shape current diameter distributions of primary temperate Norway spruce mountain forests in Europe. Forest Ecology and Management, 2022, 503, 119772.	1.4	8
5	Tradition as asset or burden for transitions from forests as cropping systems to multifunctional forest landscapes: Sweden as a case study. Forest Ecology and Management, 2022, 505, 119895.	1.4	9
6	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	5.8	66
7	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
8	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	2.0	89
9	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	5.8	8
10	Perspectives: Key factors determining the presence of Tree-related Microhabitats: A synthesis of potential factors at site, stand and tree scales, with perspectives for further research. Forest Ecology and Management, 2022, 515, 120235.	1.4	21
11	Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. Forest Ecology and Management, 2022, 517, 120272.	1.4	5
12	The Last Trees Standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agricultural and Forest Meteorology, 2022, 322, 109025.	1.9	10
13	Increasing water-use efficiency mediates effects of atmospheric carbon, sulfur, and nitrogen on growth variability of central European conifers. Science of the Total Environment, 2022, 838, 156483.	3.9	4
14	Disturbance history drives current compositional and diversity patterns of primary Picea abies (L.) Karst. forest vegetation. Forest Ecology and Management, 2022, 520, 120387.	1.4	6
15	Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems, 2021, 24, 37-55.	1.6	35
16	Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. Forest Ecology and Management, 2021, 479, 118522.	1.4	21
17	Mixing has limited impacts on the foliar nutrition of European beech and Scots pine trees across Europe. Forest Ecology and Management, 2021, 479, 118551.	1.4	4
18	Historical natural disturbances shape spruce primary forest structure and indirectly influence bird assemblage composition. Forest Ecology and Management, 2021, 481, 118647.	1.4	12

#	Article	IF	CITATIONS
19	Microbial soil biodiversity in beech forests of European mountains. Canadian Journal of Forest Research, 2021, 51, 1833-1845.	0.8	4
20	Europe under multi-year droughts: how severe was the 2014–2018 drought period?. Environmental Research Letters, 2021, 16, 034062.	2.2	66
21	Both Cycloneâ€induced and Convective Storms Drive Disturbance Patterns in European Primary Beech Forests. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033929.	1.2	12
22	Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Current Forestry Reports, 2021, 7, 138-165.	3.4	133
23	High aboveground carbon stock of African tropical montane forests. Nature, 2021, 596, 536-542.	13.7	65
24	Co-occurrence patterns of tree-related microhabitats: A method to simplify routine monitoring. Ecological Indicators, 2021, 127, 107757.	2.6	8
25	Disturbance history is a key driver of tree life span in temperate primary forests. Journal of Vegetation Science, 2021, 32, e13069.	1.1	13
26	Depicting the historical pollution in a Pb–Zn mining/smelting site in Kabwe (Zambia) using tree rings. Journal of African Earth Sciences, 2021, 181, 104246.	0.9	14
27	The impact of natural disturbance dynamics on lichen diversity and composition in primary mountain spruce forests. Journal of Vegetation Science, 2021, 32, e13087.	1.1	10
28	Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211631.	1.2	19
29	Handbook of field sampling for multi-taxon biodiversity studies in European forests. Ecological Indicators, 2021, 132, 108266.	2.6	20
30	Contrasting patterns of tree species mixture effects on wood δ13C along an environmental gradient. European Journal of Forest Research, 2020, 139, 229-245.	1.1	7
31	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
32	Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. Forest Ecology and Management, 2020, 455, 117676.	1.4	9
33	Relationships between Structural Indices and Conventional Stand Attributes in an Old-Growth Forest in Southeast Europe. Forests, 2020, 11, 4.	0.9	24
34	Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. Forest Ecology and Management, 2020, 457, 117734.	1.4	16
35	Contribution of European forests to safeguard wild honeybee populations. Conservation Letters, 2020, 13, e12693.	2.8	18
36	Integration of dendrochronological and palaeoecological disturbance reconstructions in temperate mountain forests. Forest Ecology and Management, 2020, 475, 118413.	1.4	11

#	Article	IF	CITATIONS
37	Protection gaps and restoration opportunities for primary forests in Europe. Diversity and Distributions, 2020, 26, 1646-1662.	1.9	47
38	Moderate- to High-Severity Disturbances Shaped the Structure of Primary Picea Abies (L.) Karst. Forest in the Southern Carpathians. Forests, 2020, 11, 1315.	0.9	5
39	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	3.3	140
40	Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agricultural and Forest Meteorology, 2020, 288-289, 108000.	1.9	9
41	Quantifying natural disturbances using a largeâ€scale dendrochronological reconstruction to guide forest management. Ecological Applications, 2020, 30, e02189.	1.8	27
42	Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agricultural and Forest Meteorology, 2020, 287, 107981.	1.9	9
43	Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus) Tj ETQq1 1 0. Forest Ecology and Management, 2020, 461, 117908.	.784314 rş 1.4	gBT /Overlock 65
44	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
45	Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. Forest Ecology and Management, 2019, 449, 117466.	1.4	45
46	This is my spot: What are the characteristics of the trees excavated by the Black Woodpecker? A case study in two managed French forests. Forest Ecology and Management, 2019, 453, 117621.	1.4	25
47	Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. Forest Ecology and Management, 2019, 435, 196-204.	1.4	19
48	Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. Journal of Biogeography, 2019, 46, 2466-2478.	1.4	24
49	Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Diversity and Distributions, 2019, 25, 783-796.	1.9	18
50	Microclimate edge effect in small fragments of temperate forests in the context of climate change. Forest Ecology and Management, 2019, 448, 48-56.	1.4	35
51	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.	4.2	45
52	Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.)) Tj ETQqO	0 0 rgBT /0	Dverlock 10 Tr
53	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371

⁵⁴Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc.1.92054Agricultural and Forest Meteorology, 2019, 271, 214-224.1.920

#	Article	IF	CITATIONS
55	Land use planning based on the connectivity of tree species does not ensure the conservation of forest biodiversity. Land Use Policy, 2019, 83, 63-65.	2.5	4
56	Effects of Bark Beetle Disturbance on Soil Nutrient Retention and Lake Chemistry in Glacial Catchment. Ecosystems, 2019, 22, 725-741.	1.6	20
57	Patterns of forest dynamics in a secondary old-growth beech-dominated forest in the Jizera Mountains Beech Forest Reserve, Czech Republic. IForest, 2019, 12, 17-26.	0.5	7
58	Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. International Journal of Remote Sensing, 2018, 39, 5288-5309.	1.3	24
59	Something is missing at the bottom: Importance of coastal rainforests for conservation of trees, birds and butterflies in the Mount Cameroon area. African Journal of Ecology, 2018, 56, 679-683.	0.4	11
60	Largeâ€ s cale disturbance legacies and the climate sensitivity of primary <i>Picea abies</i> forests. Global Change Biology, 2018, 24, 2169-2181.	4.2	79
61	Effects of crown architecture and stand structure on light absorption in mixed and monospecific <i>Fagus sylvatica</i> and <i>Pinus sylvestris</i> forests along a productivity and climate gradient through Europe. Journal of Ecology, 2018, 106, 746-760.	1.9	125
62	Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Science of the Total Environment, 2018, 615, 1460-1469.	3.9	80
63	Copper isotopic record in soils and tree rings near a copper smelter, Copperbelt, Zambia. Science of the Total Environment, 2018, 621, 9-17.	3.9	31
64	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	5.8	167
65	Where are Europe's last primary forests?. Diversity and Distributions, 2018, 24, 1426-1439.	1.9	268
66	Profile of tree-related microhabitats in European primary beech-dominated forests. Forest Ecology and Management, 2018, 429, 363-374.	1.4	45
67	Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. Holocene, 2018, 28, 1574-1587.	0.9	26
68	Deadwood management in Central European forests: Key considerations for practical implementation. Forest Ecology and Management, 2018, 429, 394-405.	1.4	72
69	EFO-LCI: A New Life Cycle Inventory Database of Forestry Operations in Europe. Environmental Management, 2018, 61, 1031-1047.	1.2	15
70	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	1.7	117
71	Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges. Managing Forest Ecosystems, 2018, , 185-253.	0.4	11
72	Effects of natural disturbances and salvage logging on biodiversity – Lessons from the Bohemian Forest. Forest Ecology and Management, 2017, 388, 113-119.	1.4	85

#	Article	IF	CITATIONS
73	Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus) Tj ETQq1	1 0,7843	14 rgBT /Ovei
74	Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landscape Ecology, 2017, 32, 163-179.	1.9	43
75	Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodiversity and Conservation, 2017, 26, 1943-1958.	1.2	13
76	Forest disturbances under climate change. Nature Climate Change, 2017, 7, 395-402.	8.1	1,561
77	Shrubs shed light on 20th century Greenland Ice Sheet melting. Boreas, 2017, 46, 667-677.	1.2	10
78	Species interactions increase the temporal stability of community productivity in <i>Pinus sylvestris–Fagus sylvatica</i> mixtures across Europe. Journal of Ecology, 2017, 105, 1032-1043.	1.9	140
79	Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Forest Ecology and Management, 2017, 405, 210-218.	1.4	35
80	Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. Forest Ecology and Management, 2017, 405, 112-133.	1.4	40
81	Longâ€ŧerm responses of canopy–understorey interactions to disturbance severity in primary <i>Picea abies</i> forests. Journal of Vegetation Science, 2017, 28, 1128-1139.	1.1	16
82	More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecology and Management, 2017, 406, 410-426.	1.4	78
83	A matter of time: self-regulated tree regeneration in a natural Norway spruce (Picea abies) forest at Mt. Brocken, Germany. European Journal of Forest Research, 2017, 136, 907-921.	1.1	7
84	Wood anatomy of Juniperus communis: a promising proxy for palaeoclimate reconstructions in the Arctic. Polar Biology, 2017, 40, 977-988.	0.5	14
85	The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. Forest Ecology and Management, 2017, 388, 29-42.	1.4	87
86	Life and death of <i><scp>P</scp>icea abies</i> after barkâ€beetle outbreak: ecological processes driving seedling recruitment. Ecological Applications, 2017, 27, 156-167.	1.8	36
87	A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 2017, 388, 120-131.	1.4	172
88	The central role of disturbances in mountain forests of Europe. Forest Ecology and Management, 2017, 388, 1-2.	1.4	6
89	Models of disturbance driven dynamics in the West Carpathian spruce forests. Forest Ecology and Management, 2017, 388, 79-89.	1.4	43
90	The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388, 67-78.	1.4	103

#	Article	lF	CITATIONS
91	Salvage-Logging after Windstorm Leads to Structural and Functional Homogenization of Understory Layer and Delayed Spruce Tree Recovery in Tatra Mts., Slovakia. Forests, 2017, 8, 88.	0.9	55
92	Past disturbances and intraspecific competition as drivers of spatial pattern in primary spruce forests. Ecosphere, 2017, 8, e02037.	1.0	8
93	Quantitative Palynology Informing Conservation Ecology in the Bohemian/Bavarian Forests of Central Europe. Frontiers in Plant Science, 2017, 8, 2268.	1.7	23
94	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	4.2	394
95	Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment. Frontiers in Plant Science, 2016, 7, 805.	1.7	18
96	Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. Forest Ecology and Management, 2016, 373, 149-166.	1.4	115
97	The legacy of disturbance on individual tree and stand-level aboveground biomass accumulation and stocks in primary mountain Picea abies forests. Forest Ecology and Management, 2016, 373, 108-115.	1.4	30
98	Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecology and Management, 2016, 363, 169-178.	1.4	75
99	Trace Elements and the Lead Isotopic Record in Marula (Sclerocarya birrea) Tree Rings and Soils Near the Tsumeb Smelter, Namibia. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	19
100	Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica, 2015, 47, 758-764.	0.8	19
101	Response of mountain <i>Picea abies</i> forests to standâ€replacing bark beetle outbreaks: neighbourhood effects lead to selfâ€replacement. Journal of Applied Ecology, 2015, 52, 1402-1411.	1.9	57
102	Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests. PLoS ONE, 2015, 10, e0139214.	1.1	35
103	What are the transitions of woodlands at the landscape level? Change trajectories of forest, non-forest and reclamation woody vegetation elements in a mining landscape in North-western Czech Republic. Applied Geography, 2015, 58, 206-216.	1.7	22
104	Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 2015, 354, 77-86.	1.4	104
105	Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation. Forest Ecology and Management, 2015, 346, 106-113.	1.4	42
106	Forests: Not just timber plantations. Nature, 2015, 521, 32-32.	13.7	6
107	Effects of topography and forest stand dynamics on soil morphology in three natural Picea abies mountain forests. Plant and Soil, 2015, 392, 57-69.	1.8	19
108	The variations of aluminium species in mountainous forest soils and its implications to soil acidification. Environmental Science and Pollution Research, 2015, 22, 16676-16687.	2.7	11

#	Article	IF	CITATIONS
109	Evaluating forest management intensity on an umbrella species: Capercaillie persistence in central Europe. Forest Ecology and Management, 2015, 354, 26-34.	1.4	42
110	A power-driven increment borer for sampling high-density tropical wood. Dendrochronologia, 2015, 36, 40-44.	1.0	15
111	Does a minimal intervention approach threaten the biodiversity of protected areas? A multi-taxa short-term response to intervention in temperate oak-dominated forests. Forest Ecology and Management, 2015, 358, 80-89.	1.4	61
112	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	4.7	403
113	Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry, 2014, 87, 492-503.	1.2	277
114	Three hundred years of spatio-temporal development in a primary mountain Norway spruce stand in the Bohemian Forest, central Europe. Forest Ecology and Management, 2014, 330, 304-311.	1.4	19
115	Ecology of <i>Tilia sibirica</i> in a continental hemiboreal forest, southern Siberia: An analogue of a glacial refugium of broad-leaved temperate trees?. Holocene, 2014, 24, 908-918.	0.9	16
116	Landscapeâ€level variability in historical disturbance in primary <i><scp>P</scp>icea abies</i> mountain forests of the <scp>E</scp> astern <scp>C</scp> arpathians, <scp>R</scp> omania. Journal of Vegetation Science, 2014, 25, 386-401.	1.1	99
117	Spatial patterns with memory: tree regeneration after standâ€replacing disturbance in <i><scp>P</scp>icea abies</i> mountain forests. Journal of Vegetation Science, 2014, 25, 1327-1340.	1.1	47
118	A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. Forest Ecology and Management, 2014, 334, 144-153.	1.4	78
119	Disturbance, life history traits, and dynamics in an oldâ€growth forest landscape of southeastern Europe. Ecological Applications, 2014, 24, 663-679.	1.8	97
120	Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species. Web Ecology, 2014, 14, 61-64.	0.4	5
121	European Mixed Forests: definition and research perspectives. Forest Systems, 2014, 23, 518.	0.1	107
122	Maintaining Cultural and Natural Biodiversity in the Carpathian Mountain Ecoregion: Need for an Integrated Landscape Approach. Environmental Science and Engineering, 2013, , 393-424.	0.1	9
123	Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. Forest Ecology and Management, 2013, 305, 294-306.	1.4	42
124	Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management, 2013, 295, 59-68.	1.4	43
125	A density management diagram for Norway spruce in the temperate European montane region. European Journal of Forest Research, 2013, 132, 535-549.	1.1	20
126	Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environmental Conservation, 2013, 40, 182-193.	0.7	68

#	Article	IF	CITATIONS
127	Natural regeneration in Central-European subalpine spruce forests: Which logs are suitable for seedling recruitment?. Forest Ecology and Management, 2012, 266, 254-262.	1.4	73
128	Disturbance history of an oldâ€growth subâ€alpine <scp><i>P</i></scp> <i>icea abies</i> stand in the <scp>B</scp> ohemian Forest, <scp>C</scp> zech <scp>R</scp> epublic. Journal of Vegetation Science, 2012, 23, 86-97.	1.1	113
129	Diversity of wood-decaying fungi under different disturbance regimes—a case study from spruce mountain forests. Biodiversity and Conservation, 2012, 21, 33-49.	1.2	46
130	How do log characteristics influence the occurrence of wood fungi in a mountain spruce forest?. Fungal Ecology, 2011, 4, 201-209.	0.7	32
131	Changes in Mercury Deposition in a Mining and Smelting Region as Recorded in Tree Rings. Water, Air, and Soil Pollution, 2011, 216, 73-82.	1.1	45
132	Density and height structure of seedlings in subalpine spruce forests of Central Europe: logs vs. stumps as a favourable substrate. Silva Fennica, 2011, 45, .	0.5	20
133	The diversity of wood-decaying fungi in relation to changing site conditions in an old-growth mountain spruce forest, Central Europe. European Journal of Forest Research, 2010, 129, 219-231.	1.1	41
134	Gap regeneration and replacement patterns in an old-growth Fagus–Abies forest of Bosnia–Herzegovina. Plant Ecology, 2010, 208, 307-318.	0.7	102
135	Natural development and regeneration of a Central European montane spruce forest. Forest Ecology and Management, 2010, 260, 707-714.	1.4	136
136	Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. Forest Ecology and Management, 2009, 257, 1148-1156.	1.4	83
137	Structure of a Central-European mountain spruce old-growth forest with respect to historical development. Forest Ecology and Management, 2008, 255, 2177-2188.	1.4	50
138	Gap disturbance regime in an old-growth <i>Fagus</i> – <i>Abies</i> forest in the Dinaric Mountains, Bosnia-Herzegovina. Canadian Journal of Forest Research, 2008, 38, 2728-2737.	0.8	93
139	Carbon Isotopes in Tree Rings of Norway Spruce Exposed to Atmospheric Pollution. Environmental Science & Technology, 2007, 41, 5778-5782.	4.6	27
140	Regeneration patterns after intermediate wind disturbance in an old-growth Fagus–Abies forest in southeastern Slovenia. Forest Ecology and Management, 2006, 226, 268-278.	1.4	149
141	Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest. Biologia (Poland), 2006, 61, S509-S521.	0.8	26
142	Estimation of tree biomass of Norway spruce forest in the Plešné Lake catchment, the Bohemian Forest. Biologia (Poland), 2006, 61, S523-S532.	0.8	11
143	Deadwood in Forest Ecosystems. , 0, , .		21
144	Evaluating the mitigation effectiveness of forests managed for conservation versus commodity production using an Australian example. Conservation Letters, 0, , .	2.8	2