
Luisa Rossetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design. Heat Transfer Engineering, 2006, 27, 31-38.	1.9	416
2	Condensation of Halogenated Refrigerants Inside Smooth Tubes. HVAC and R Research, 2002, 8, 429-451.	0.6	212
3	Air forced convection through metal foams: Experimental results and modeling. International Journal of Heat and Mass Transfer, 2013, 62, 112-123.	4.8	204
4	Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. International Journal of Thermal Sciences, 2015, 90, 79-89.	4.9	202
5	Experimental study on condensation heat transfer inside a single circular minichannel. International Journal of Heat and Mass Transfer, 2009, 52, 2311-2323.	4.8	182
6	Experimental air heat transfer and pressure drop through copper foams. Experimental Thermal and Fluid Science, 2012, 36, 224-232.	2.7	126
7	Pressure drop during air flow in aluminum foams. International Journal of Heat and Mass Transfer, 2010, 53, 3121-3130.	4.8	125
8	Update on Condensation Heat Transfer and Pressure Drop inside Minichannels. Heat Transfer Engineering, 2006, 27, 74-87.	1.9	112
9	Heat transfer during air flow in aluminum foams. International Journal of Heat and Mass Transfer, 2010, 53, 4976-4984.	4.8	98
10	Condensation Heat Transfer and Pressure Gradient Inside Multiport Minichannels. Heat Transfer Engineering, 2005, 26, 45-55.	1.9	89
11	Numerical investigation of pressure drop and heat transfer through reconstructed metal foams and comparison against experiments. International Journal of Heat and Mass Transfer, 2015, 88, 508-515.	4.8	82
12	R1234ze(E) flow boiling inside a 3.4Âmm ID microfin tube. International Journal of Refrigeration, 2014, 47, 105-119.	3.4	73
13	Experiments and updated model for two phase frictional pressure drop inside minichannels. International Journal of Heat and Mass Transfer, 2013, 67, 326-337.	4.8	62
14	Experimental study on flow boiling of R134a and R410A in a horizontal microfin tube at high saturation temperatures. Applied Thermal Engineering, 2011, 31, 3814-3826.	6.0	59
15	Flow boiling heat transfer of R1234yf inside a 3.4mm ID microfin tube. Experimental Thermal and Fluid Science, 2015, 66, 127-136.	2.7	58
16	Foam height effects on heat transfer performance of 20Âppi aluminum foams. Applied Thermal Engineering, 2012, 49, 55-60.	6.0	54
17	Heat Transfer Performance of Aluminum Foams. Journal of Heat Transfer, 2011, 133, .	2.1	53
18	Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). International lournal of Refrigeration, 2013, 36, 287-300.	3.4	51

#	Article	IF	CITATIONS
19	R134a and R1234ze(E) liquid and flow boiling heat transfer in a high porosity copper foam. International Journal of Heat and Mass Transfer, 2014, 74, 77-87.	4.8	47
20	R1234yf condensation inside a 3.4 mm ID horizontal microfin tube. International Journal of Refrigeration, 2017, 75, 178-189.	3.4	44
21	Low-GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam. International Journal of Multiphase Flow, 2015, 76, 111-121.	3.4	41
22	Condensation Heat Transfer and Pressure Losses of High- and Low-Pressure Refrigerants Flowing in a Single Circular Minichannel. Heat Transfer Engineering, 2011, 32, 90-98.	1.9	40
23	Experimental investigation of R1234ze(E) flow boiling inside a 2.4 mm ID horizontal microfin tube. International Journal of Refrigeration, 2016, 69, 272-284.	3.4	35
24	Low GWP refrigerants condensation inside a 2.4Âmm ID microfin tube. International Journal of Refrigeration, 2018, 86, 312-321.	3.4	35
25	An assessment on air forced convection on extended surfaces: Experimental results and numerical modeling. International Journal of Thermal Sciences, 2013, 67, 120-134.	4.9	34
26	Condensation of superheated vapour of R410A and R407C inside plate heat exchangers: Experimental results and simulation procedure. International Journal of Refrigeration, 2012, 35, 2003-2013.	3.4	33
27	Numerical Analysis of Air Flow through Metal Foams. Energy Procedia, 2014, 45, 645-652.	1.8	33
28	Pressure Drop During Two-Phase Flow of R134a and R32 in a Single Minichannel. Journal of Heat Transfer, 2009, 131, .	2.1	32
29	Partial condensation of R407C and R410A refrigerants inside a plate heat exchanger. Experimental Thermal and Fluid Science, 2012, 36, 149-157.	2.7	29
30	R32 partial condensation inside a brazed plate heat exchanger. International Journal of Refrigeration, 2013, 36, 601-611.	3.4	29
31	R134a Flow Boiling Heat Transfer and Pressure Drop inside a 3.4mm ID Microfin Tube. Energy Procedia, 2014, 45, 608-615.	1.8	29
32	Convective boiling inside a single circular microchannel. International Journal of Heat and Mass Transfer, 2013, 67, 1231-1245.	4.8	28
33	Experimental study on heat transfer condensation of R1234ze(E) and R134a inside a 4.0â€ ⁻ mm OD horizontal microfin tube. International Journal of Heat and Mass Transfer, 2018, 126, 1316-1325.	4.8	28
34	R513A flow boiling heat transfer inside horizontal smooth tube and microfin tube. International Journal of Refrigeration, 2019, 107, 301-314.	3.4	27
35	R1234yf Flow Boiling Heat Transfer Inside a 2.4-mm Microfin Tube. Heat Transfer Engineering, 2017, 38, 303-312.	1.9	25
36	R513A condensation heat transfer inside tubes: Microfin tube vs. smooth tube. International Journal of Heat and Mass Transfer, 2020, 152, 119472.	4.8	25

#	Article	IF	CITATIONS
37	Experimental Measurements of R134a Flow Boiling Inside a 3.4-mm ID Microfin Tube. Heat Transfer Engineering, 2015, 36, 1218-1229.	1.9	24
38	Mini Vapor Cycle System for high density electronic cooling applications. International Journal of Refrigeration, 2013, 36, 1191-1202.	3.4	23
39	Flow boiling heat transfer, dewetting-rewetting, and dryout visualization of HFOs in an asymmetrically heated rectangular plain channel. Applied Thermal Engineering, 2016, 107, 960-974.	6.0	20
40	Flow Boiling of R245fa in a Single Circular Microchannel. Heat Transfer Engineering, 2011, 32, 1160-1172.	1.9	19
41	Melting of phase change materials inside periodic cellular structures fabricated by additive manufacturing: Experimental results and numerical simulations. Applied Thermal Engineering, 2022, 215, 118969.	6.0	18
42	Melting of PCMs Embedded in Copper Foams: An Experimental Study. Materials, 2021, 14, 1195.	2.9	16
43	Characteristics of R513A evaporation heat transfer inside small-diameter smooth and microfin tubes. International Journal of Heat and Mass Transfer, 2020, 162, 120402.	4.8	13
44	A Model for Condensation Inside Minichannels. , 2005, , 297.		11
45	Experimental analysis of refrigerants flow boiling inside small sized microfin tubes. Heat and Mass Transfer, 2018, 54, 2315-2329.	2.1	11
46	Melting of Paraffin Waxes Embedded in a Porous Matrix Made by Additive Manufacturing. Applied Sciences (Switzerland), 2021, 11, 5396.	2.5	11
47	Flow boiling of R32 inside a brazed plate heat exchanger. International Journal of Refrigeration, 2016, 69, 165-174.	3.4	10
48	Pure Vapour Condensation of Refrigerants 11 and 113 on a Horizontal Integral Finned Tube at High Vapour Velocity. Journal of Enhanced Heat Transfer, 1993, 1, 77-86.	1.1	10
49	Experiments on dry-out during flow boiling in a round minichannel. Microgravity Science and Technology, 2007, 19, 57-59.	1.4	7
50	Flow Boiling of Refrigerants Inside a Single Circular Minichannel. , 2008, , .		7
51	Flow boiling heat transfer of R1234yf on a microparticle coated copper surface. Science and Technology for the Built Environment, 2016, 22, 1156-1166.	1.7	7
52	Measurement and prediction of evaporator shell-side pressure drop. International Journal of Refrigeration, 2005, 28, 320-330.	3.4	6
53	Liquid and Flow Boiling Heat Transfer Inside a Copper Foam. , 2014, 4, 365-370.		6
54	R1234yf Flow Boiling Heat Transfer in a Rectangular Channel Heated from the Bottom. Heat Transfer Engineering, 2018, 39, 198-207.	1.9	6

#	Article	IF	CITATIONS
55	Condensation of an Azeotropic Mixture inside 2.5 mm ID Minitubes. Fluids, 2020, 5, 171.	1.7	4
56	Flow Boiling Inside a Single Circular Minichannel: Measurement of Local Heat Transfer Coefficient. , 2007, , .		2
57	Frictional Pressure Drops During Vapour-Liquid Flow in Minichannels: Experimental Data and Modelling. , 2008, , .		2
58	Heat transfer performance of Aluminum foams during single phase air flow. , 2008, , .		2
59	Heat and Mass Transfer to Air in a Cross Flow Heat Exchanger with Surface Deluge Cooling. International Journal of Air-Conditioning and Refrigeration, 2016, 24, 1650002.	0.7	2
60	Experimental And Analytical Study Of Heat Transfer And Fluid Flow Through Aluminum Foams. AIP Conference Proceedings, 2010, , .	0.4	1
61	Convective Air Heat Transfer Through 10 PPI Aluminum Foams. , 2010, , .		1
62	R1234ze(E) Flow Boiling inside a 2.5 mm ID Smooth Tube and Comparison against an Equivalent Microfin Tube. Applied Sciences (Switzerland), 2021, 11, 2627.	2.5	1
63	Performance prediction of a multi-tank domestic hot water solar plant. International Journal of Ambient Energy, 1984, 5, 131-142.	2.5	О
64	Material and height effects on the heat transfer performance of metal foams cooled by air in forced convection. , 2012, , .		0
65	Porosity Effects on Thermal Behaviour of 10 PPI Aluminum Foam. , 2009, , .		О