Yves C Gorin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119644/publications.pdf

Version: 2024-02-01

56 5,574 37 54 papers citations h-index g-index

56 56 56 6891 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nox4 NAD(P)H Oxidase Mediates Hypertrophy and Fibronectin Expression in the Diabetic Kidney. Journal of Biological Chemistry, 2005, 280, 39616-39626.	3.4	451
2	Subcellular localization of Nox4 and regulation in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14385-14390.	7.1	416
3	Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney International, 2011, 79, 944-956.	5.2	353
4	Mechanisms of Podocyte Injury in Diabetes. Diabetes, 2009, 58, 1201-1211.	0.6	265
5	NAD(P)H Oxidase Mediates TGF-β1–Induced Activation of Kidney Myofibroblasts. Journal of the American Society of Nephrology: JASN, 2010, 21, 93-102.	6.1	259
6	Nox4 mediates angiotensin Il-induced activation of Akt/protein kinase B in mesangial cells. American Journal of Physiology - Renal Physiology, 2003, 285, F219-F229.	2.7	245
7	Aiding and abetting roles of NOX oxidases in cellular transformation. Nature Reviews Cancer, 2012, 12, 627-637.	28.4	245
8	AMP-activated Protein Kinase (AMPK) Negatively Regulates Nox4-dependent Activation of p53 and Epithelial Cell Apoptosis in Diabetes. Journal of Biological Chemistry, 2010, 285, 37503-37512.	3.4	222
9	Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. American Journal of Physiology - Renal Physiology, 2015, 308, F1276-F1287.	2.7	156
10	Reactive oxygen species derived from Nox4 mediate <i>BMP2</i> gene transcription and osteoblast differentiation. Biochemical Journal, 2011, 433, 393-402.	3.7	128
11	Nox4 NAD(P)H Oxidase Mediates Src-dependent Tyrosine Phosphorylation of PDK-1 in Response to Angiotensin II. Journal of Biological Chemistry, 2008, 283, 24061-24076.	3.4	123
12	Mammalian Target of Rapamycin Regulates Nox4-Mediated Podocyte Depletion in Diabetic Renal Injury. Diabetes, 2013, 62, 2935-2947.	0.6	119
13	Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochemical Journal, 2004, 381, 231-239.	3.7	117
14	Sestrin2 as a Novel Biomarker and Therapeutic Target for Various Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	4.0	117
15	Sestrin 2 and AMPK Connect Hyperglycemia to Nox4-Dependent Endothelial Nitric Oxide Synthase Uncoupling and Matrix Protein Expression. Molecular and Cellular Biology, 2013, 33, 3439-3460.	2.3	114
16	Mechanism of Oxidative DNA Damage in Diabetes. Diabetes, 2008, 57, 2626-2636.	0.6	113
17	RhoA/Rho kinase mediates TGF- \hat{l}^2 ₁ -induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. American Journal of Physiology - Renal Physiology, 2014, 307, F159-F171.	2.7	112
18	Nox4 NADPH Oxidase Mediates Peroxynitrite-dependent Uncoupling of Endothelial Nitric-oxide Synthase and Fibronectin Expression in Response to Angiotensin II. Journal of Biological Chemistry, 2013, 288, 28668-28686.	3.4	110

#	Article	IF	Citations
19	Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology - Cell Physiology, 2012, 302, C597-C604.	4.6	108
20	NAD(P)H Oxidases Regulate HIF-2α Protein Expression. Journal of Biological Chemistry, 2007, 282, 8019-8026.	3.4	107
21	Nox as a target for diabetic complications. Clinical Science, 2013, 125, 361-382.	4.3	106
22	Nox4 and diabetic nephropathy: With a friend like this, who needs enemies?. Free Radical Biology and Medicine, 2013, 61, 130-142.	2.9	104
23	The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. American Journal of Physiology - Renal Physiology, 2013, 305, F691-F700.	2.7	100
24	Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redoxâ€dependent pathway and independent of phosphoinositide 3â€kinase. FASEB Journal, 2001, 15, 1909-1920.	0.5	99
25	Involvement of Calcineurin in Transforming Growth Factor- \hat{l}^2 -mediated Regulation of Extracellular Matrix Accumulation. Journal of Biological Chemistry, 2004, 279, 15561-15570.	3.4	95
26	Nox4 Mediates Renal Cell Carcinoma Cell Invasion through Hypoxia-Induced Interleukin 6- and 8-Production. PLoS ONE, 2012, 7, e30712.	2.5	88
27	ZΟ-1 Expression and Phosphorylation in Diabetic Nephropathy. Diabetes, 2006, 55, 894-900.	0.6	78
28	Activation of AMP-Activated Protein Kinase Prevents TGF-β1–Induced Epithelial-Mesenchymal Transition and Myofibroblast Activation. American Journal of Pathology, 2015, 185, 2168-2180.	3.8	73
29	Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. American Journal of Physiology - Renal Physiology, 2006, 290, F927-F936.	2.7	68
30	Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. American Journal of Physiology - Cell Physiology, 2011, 301, C304-C315.	4.6	65
31	mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxidants and Redox Signaling, 2016, 25, 703-719.	5.4	57
32	Pathophysiology of gadolinium-associated systemic fibrosis. American Journal of Physiology - Renal Physiology, 2016, 311, F1-F11.	2.7	57
33	Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney International, 2002, 62, S8-S11.	5.2	55
34	Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. American Journal of Physiology - Renal Physiology, 2006, 290, F741-F751.	2.7	53
35	IGF-I increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells. American Journal of Physiology - Cell Physiology, 2012, 302, C122-C130.	4.6	46
36	The NADPH Oxidase Subunit p22 Inhibits the Function of the Tumor Suppressor Protein Tuberin. American Journal of Pathology, 2010, 176, 2447-2455.	3.8	40

#	Article	IF	CITATIONS
37	ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice. American Journal of Physiology - Renal Physiology, 2013, 305, F323-F332.	2.7	40
38	Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. Journal of Biological Chemistry, 2017, 292, 5665-5675.	3.4	40
39	Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes. Journal of Biological Chemistry, 2015, 290, 12014-12026.	3.4	38
40	Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease. Molecules and Cells, 2015, 38, 285-296.	2.6	37
41	The Kidney: An Organ in the Front Line of Oxidative Stress-Associated Pathologies. Antioxidants and Redox Signaling, 2016, 25, 639-641.	5.4	36
42	Interplay between RNA-binding protein HuR and Nox4 as a novel therapeutic target in diabetic kidney disease. Molecular Metabolism, 2020, 36, 100968.	6.5	35
43	Arachidonic Acid–Dependent Activation of a p22phox-Based NAD(P)H Oxidase Mediates Angiotensin Il–Induced Mesangial Cell Protein Synthesis and Fibronectin Expression via Akt/PKB. Antioxidants and Redox Signaling, 2006, 8, 1497-1508.	5.4	34
44	Mitogenic Signaling via Platelet-Derived Growth Factor \hat{l}^2 in Metanephric Mesenchymal Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 2903-2911.	6.1	32
45	Nephrogenic Systemic Fibrosis. American Journal of Pathology, 2012, 181, 1941-1952.	3.8	32
46	Nox4 as a potential therapeutic target for treatment of uremic toxicity associated to chronic kidney disease. Kidney International, 2013, 83, 541-543.	5.2	29
47	Symmetric dimethylarginine alters endothelial nitric oxide activity in glomerular endothelial cells. Cellular Signalling, 2015, 27, 1-5.	3.6	28
48	PI 3 kinase-dependent Akt kinase and PKClµ independently regulate interferon-l³-induced STAT1l± serine phosphorylation to induce monocyte chemotactic protein-1 expression. Cellular Signalling, 2006, 18, 508-518.	3.6	26
49	CSFâ€1 in Osteocytes Inhibits Nox4â€mediated Oxidative Stress and Promotes Normal Bone Homeostasis. JBMR Plus, 2020, 4, e10080.	2.7	26
50	A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF. American Journal of Physiology - Cell Physiology, 2014, 306, C1089-C1100.	4.6	21
51	Akt2 causes $TGF\hat{l}^2$ -induced deptor downregulation facilitating mTOR to drive podocyte hypertrophy and matrix protein expression. PLoS ONE, 2018, 13, e0207285.	2.5	16
52	PDGF receptor- \hat{l}^2 modulates metanephric mesenchyme chemotaxis induced by PDGF AA. American Journal of Physiology - Renal Physiology, 2009, 296, F406-F417.	2.7	14
53	Centrality of bone marrow in the severity of gadoliniumâ€based contrastâ€induced systemic fibrosis. FASEB Journal, 2016, 30, 3026-3038.	0.5	14
54	Src tyrosine kinase mediates platelet-derived growth factor BB-induced and redox-dependent migration in metanephric mesenchymal cells. American Journal of Physiology - Renal Physiology, 2014, 306, F85-F97.	2.7	12

#	Article	IF	CITATIONS
55	Diabetes Downregulates TRPC6 Protein Expression in Glomerular Mesangial Cells via a ROS and PKC Pathway. FASEB Journal, 2011, 25, 664.1.	0.5	O
56	AMPâ€activated Protein Kinase (AMPK) regulates TGFâ€Î²1 Induced Fibronectin Expression in Renal Tubular Epithelial Cells. FASEB Journal, 2013, 27, 601.10.	0.5	0