Guanying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119444/publications.pdf Version: 2024-02-01

CHANVING LL

#	Article	IF	CITATIONS
1	Biomimetic MOF Nanoparticles Delivery of C-Dot Nanozyme and CRISPR/Cas9 System for Site-Specific Treatment of Ulcerative Colitis. ACS Applied Materials & Interfaces, 2022, 14, 6358-6369.	4.0	43
2	Capture Phosphates via Peptide Selfâ€assembly to Construct Templates Assisting Mineralization. ChemNanoMat, 2022, 8, .	1.5	1
3	Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. Langmuir, 2022, 38, 8733-8747.	1.6	6
4	Microtubule-Targeted Self-Assembly Triggers Prometaphase–Metaphase Oscillations Suppressing Tumor Growth. Nano Letters, 2021, 21, 3052-3059.	4.5	10
5	Robust Packing of a Selfâ€Assembling Iridium Complex via Endocytic Trafficking for Longâ€Term Lysosome Tracking. Angewandte Chemie - International Edition, 2021, 60, 7597-7601.	7.2	32
6	Lipid-Raft-Targeted Molecular Self-Assembly Inactivates YAP to Treat Ovarian Cancer. Nano Letters, 2021, 21, 747-755.	4.5	23
7	Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid Crystalline Gels. Frontiers in Chemistry, 2020, 8, 583165.	1.8	0
8	Enzymatic Insertion of Lipids Increases Membrane Tension for Inhibiting Drug Resistant Cancer Cells. Chemistry - A European Journal, 2020, 26, 15116-15120.	1.7	16
9	Integrin and Heparan Sulfate Dual-Targeting Peptide Assembly Suppresses Cancer Metastasis. ACS Applied Materials & Interfaces, 2020, 12, 19277-19284.	4.0	16
10	Self-Assembly-Directed Cancer Cell Membrane Insertion of Synthetic Analogues for Permeability Alteration. Langmuir, 2019, 35, 7376-7382.	1.6	8
11	Enzyme-mediated dual-targeted-assembly realizes a synergistic anticancer effect. Chemical Communications, 2019, 55, 6126-6129.	2.2	9
12	Interfering with DNA Highâ€Order Structures using Chiral Ruthenium(II) Complexes. Chemistry - A European Journal, 2018, 24, 690-698.	1.7	8
13	A GSH-activatable ruthenium(<scp>ii</scp>)-azo photosensitizer for two-photon photodynamic therapy. Chemical Communications, 2017, 53, 1977-1980.	2.2	94
14	Patching of Lipid Rafts by Molecular Self-Assembled Nanofibrils Suppresses Cancer Cell Migration. CheM, 2017, 2, 283-298.	5.8	40
15	Co-organizing synthesis of heterogeneous nanostructures through the photo-cleavage of pre-stabilized self-assemblies. Chemical Communications, 2017, 53, 4702-4705.	2.2	8
16	Ruthenium(<scp>ii</scp>) complexes with dppz: from molecular photoswitch to biological applications. Dalton Transactions, 2016, 45, 13261-13276.	1.6	124
17	Organometallic Hydrogels. ChemNanoMat, 2016, 2, 364-375.	1.5	17
18	Iridium(III) Anthraquinone Complexes as Twoâ€Photon Phosphorescence Probes for Mitochondria Imaging and Tracking under Hypoxia. Chemistry - A European Journal, 2016, 22, 8955-8965.	1.7	67

GUANYING LI

#	Article	IF	CITATIONS
19	Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids. Scientific Reports, 2015, 5, 14837.	1.6	52
20	A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and inÂvivo. Biomaterials, 2015, 53, 285-295.	5.7	117
21	Direct imaging of biological sulfur dioxide derivatives inÂvivo using a two-photon phosphorescent probe. Biomaterials, 2015, 63, 128-136.	5.7	58
22	Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials, 2015, 56, 140-153.	5.7	227
23	Cyclometalated iridium(<scp>iii</scp>) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives for mitochondrial imaging in living cells. Dalton Transactions, 2015, 44, 7538-7547.	1.6	45
24	Phosphorescent iridium(iii) complexes as multicolour probes for imaging of hypochlorite ions in mitochondria. Journal of Materials Chemistry B, 2014, 2, 7918-7926.	2.9	77
25	Synthesis, DNA interaction and anticancer activity of copper(II) complexes with 4′-phenyl-2,2′:6′,2″-terpyridine derivatives. Journal of Inorganic Biochemistry, 2014, 141, 17-27.	1.5	64
26	DNA condensation induced by metal complexes. Coordination Chemistry Reviews, 2014, 281, 100-113.	9.5	84
27	A dinuclear iridium(iii) complex as a visual specific phosphorescent probe for endogenous sulphite and bisulphite in living cells. Chemical Science, 2013, 4, 4426.	3.7	108
28	Mitochondria-specific phosphorescent imaging and tracking in living cells with an AIPE-active iridium(iii) complex. Chemical Communications, 2013, 49, 11095.	2.2	78
29	Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes. Journal of Inorganic Biochemistry, 2013, 119, 43-53.	1.5	108
30	Colorimetric and luminescent dual-signaling responsive probing of thiols by a ruthenium(II)-azo complex. Journal of Inorganic Biochemistry, 2013, 121, 108-113.	1.5	19
31	Thiol-specific phosphorescent imaging in living cells with an azobis(2,2′-bipyridine)-bridged dinuclear iridium(iii) complex. Chemical Communications, 2013, 49, 2040.	2.2	51
32	Synthesis, DNA-binding and topoisomerase inhibitory activity of ruthenium(II) polypyridyl complexes. European Journal of Medicinal Chemistry, 2011, 46, 1056-1065.	2.6	115
33	Synthesis, DNA-binding and DNA-photocleavage properties of ruthenium(II) mixed-polypyridyl complex [Ru(tbz)2(dppz)]2+. Journal of Molecular Structure, 2008, 892, 485-489.	1.8	10