
Marco Martino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically driven SiC-based structured catalysts for intensified reforming processes. Catalysis Today, 2022, 383, 31-43.	2.2	37
2	Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor. Renewable Energy, 2022, 182, 913-922.	4.3	14
3	The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review. Energies, 2022, 15, 2383.	1.6	16
4	Catalysts for Sustainable Hydrogen Production: Preparation, Applications and Process Integration. Catalysts, 2022, 12, 322.	1.6	3
5	Fuel grade bioethanol reforming in a fluidized bed reactor over highly durable Pt-Ni/CeO2-SiO2 catalysts. Chemical Engineering and Processing: Process Intensification, 2022, 174, 108888.	1.8	4
6	Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review. Energies, 2022, 15, 3588.	1.6	21
7	MW-Assisted Regeneration of 13X Zeolites after N2O Adsorption from Concentrated Streams: A Process Intensification. Energies, 2022, 15, 4119.	1.6	4
8	Structured Supports and Catalysts: Design, Preparation, and Applications. Compounds, 2022, 2, 191-192.	1.0	1
9	Ceria-coated replicated aluminium sponges as catalysts for the CO-water gas shift process. International Journal of Hydrogen Energy, 2021, 46, 12158-12168.	3.8	12
10	Ultracompact methane steam reforming reactor based on microwaves susceptible structured catalysts for distributed hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 13729-13747.	3.8	55
11	Intensification of TSA processes using a microwave-assisted regeneration step. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108291.	1.8	21
12	Main Hydrogen Production Processes: An Overview. Catalysts, 2021, 11, 547.	1.6	80
13	Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts, 2021, 11, 1070.	1.6	22
14	General catalyst-related issues. , 2020, , 303-324.		2
15	A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid–Gas Phase Chemical Processes. Nanomaterials, 2020, 10, 1596.	1.9	39
16	Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation. Journal of Carbon Research, 2020, 6, 52.	1.4	9
17	Membrane reactor technology and catalysis for intensified hydrogen production. , 2020, , 121-140.		1
18	Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability. Catalysts, 2020, 10, 665.	1.6	39

Marco Martino

#	Article	IF	CITATIONS
19	Pt/Re/CeO2 Based Catalysts for CO-Water–Gas Shift Reaction: from Powders to Structured Catalyst. Catalysts, 2020, 10, 564.	1.6	13
20	Platinum Based Catalysts in the Water Gas Shift Reaction: Recent Advances. Metals, 2020, 10, 866.	1.0	33
21	Microwaves and Heterogeneous Catalysis: A Review on Selected Catalytic Processes. Catalysts, 2020, 10, 246.	1.6	117
22	Membrane reactors for H2 and energy production. , 2020, , 33-56.		4
23	A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming. Catalysts, 2020, 10, 352.	1.6	157
24	Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction. Catalysts, 2019, 9, 991.	1.6	24
25	State of the Art of Conventional Reactors for Methanol Production. , 2018, , 29-51.		14
26	CFD modeling of the influence of carrier thermal conductivity for structured catalysts in the WGS reaction. Chemical Engineering Science, 2018, 178, 1-11.	1.9	21
27	Structured noble metal-based catalysts for the WGS process intensification. International Journal of Hydrogen Energy, 2018, 43, 11745-11754.	3.8	20
28	Pt on SAS-CeO2 nanopowder as catalyst for the CO-WGS reaction. International Journal of Hydrogen Energy, 2018, 43, 19965-19975.	3.8	14
29	Comparative Study Between Aluminum Monolith and Foam as Carriers for The Intensification of The CO Water Gas Shift Process. Catalysts, 2018, 8, 489.	1.6	13
30	Novel structured catalysts configuration for intensification of steam reforming of methane. International Journal of Hydrogen Energy, 2017, 42, 1629-1638.	3.8	30
31	The influence of the textural properties of aluminum foams as catalyst carriers for water gas shift process. International Journal of Hydrogen Energy, 2017, 42, 23517-23525.	3.8	14
32	Innovative structured catalytic systems for methane steam reforming intensification. Chemical Engineering and Processing: Process Intensification, 2017, 120, 207-215.	1.8	32
33	Catalysts for conversion of synthesis gas. , 2017, , 217-277.		6
34	Innovative catalyst design for methane steam reforming intensification. Fuel, 2017, 198, 175-182.	3.4	38
35	Bimetallic supported catalysts for hydrocarbons and alcohols reforming reactions. , 2017, , 39-70.		0
36	Structured catalyst for process intensification in hydrogen production by reforming processes. ,		0

2017, , 1-37.

Marco Martino

#	Article	IF	CITATIONS
37	Structured catalysts with high thermoconductive properties for the intensification of Water Gas Shift process. Chemical Engineering Journal, 2016, 304, 544-551.	6.6	19
38	Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. Journal of Cleaner Production, 2016, 111, 217-230.	4.6	35
39	Thermal stability of ammonium salts as compatibilizers in polymer/layered silicate nanocomposites. E-Polymers, 2009, 9, .	1.3	16
40	Conformational Templation in a Singly Bridged Calix[7]arene Derivative Induced by Alkali Metal Cations. Organic Letters, 2006, 8, 4409-4412.	2.4	14
41	Transglutaminase surface recognition by peptidocalix[4]arene diversomers. Tetrahedron Letters, 2005, 46, 1611-1615.	0.7	55
42	Chemistry of Calix[7]arenes. ChemInform, 2004, 35, no.	0.1	0
43	Regioselective double intramolecular bridging of p-tert-butylcalix[7]arene. Tetrahedron Letters, 2004, 45, 3387-3391.	0.7	14
44	Oxygenation of Calixarene Phenol Rings. Organic Letters, 2004, 6, 3027-3030.	2.4	11
45	Chemistry of Calix[7]arenes. Mini-Reviews in Organic Chemistry, 2004, 1, 219-231.	0.6	14
46	Synthesis of the first examples of p-bromodienone and transannular spirodienone calixarene derivatives. Tetrahedron Letters, 2003, 44, 9155-9159.	0.7	18
47	Convenient regioselective functionalization at the upper-rim of p-tert-butylcalix[8]arene through a protection–deprotection procedure. Tetrahedron Letters, 2002, 43, 8875-8878.	0.7	28
48	Regioselective intramolecular bridging of p-tert-butylcalix[7]arene. Tetrahedron Letters, 2002, 43, 9521-9525.	0.7	16
49	Regioselective O-Substitution of p-tert-Butylcalix[7]arene. Organic Letters, 2002, 4, 1531-1534.	2.4	14
50	Synthesis of Aplyolide A, Ichthyotoxic Macrolide Isolated from the Skin of the Marine Mollusk Aplysia depilans. Synlett, 2001, 2001, 1971-1973.	1.0	18
51	Absolute Configuration of 1,n-Diols by NMR:  The Importance of the Combined Anisotropic Effects in Bis-Arylmethoxyacetates. Organic Letters, 2000, 2, 3261-3264.	2.4	55
52	Noble Metals-Based Catalysts for Hydrogen Production via Bioethanol Reforming in a Fluidized Bed Reactor. , 0, , .		1