Richard Hobbs

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9118993/richard-hobbs-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

393
papers

30,983
citations

79
h-index
g-index

422
ext. papers

5
avg, IF

7.43
L-index

#	Paper	IF	Citations
393	Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. <i>Plant and Soil</i> , 2022 , 472, 577	4.2	1
392	The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales <i>Ecology</i> , 2022 , e3650	4.6	2
391	Offshore platforms as novel ecosystems: A case study from Australia's Northwest Shelf <i>Ecology and Evolution</i> , 2022 , 12, e8496	2.8	
390	Does the need to drink influence nest site selection in a wide-ranging threatened cockatoo?. <i>Forest Ecology and Management</i> , 2022 , 505, 119928	3.9	
389	Identifying optimal solutions between competing economic and conservation land use objectives for species that require widely distributed resources. <i>Environmental Modelling and Software</i> , 2022 , 148, 105292	5.2	O
388	A rocky heart in a spinifex sea: occurrence of an endangered marsupial predator is multiscale dependent in naturally fragmented landscapes. <i>Landscape Ecology</i> , 2021 , 36, 1359-1376	4.3	4
387	Burrowing by translocated boodie () populations alters soils but has limited effects on vegetation. <i>Ecology and Evolution</i> , 2021 , 11, 2596-2615	2.8	2
386	Rock removal associated with agricultural intensification will exacerbate the loss of reptile diversity. <i>Journal of Applied Ecology</i> , 2021 , 58, 1557	5.8	1
385	Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. <i>Ecological Engineering</i> , 2021 , 165, 106222	3.9	6
384	Engineering restoration for the future. <i>Ecological Engineering</i> , 2021 , 159, 106103	3.9	7
383	Micro-scale geography of synchrony in a serpentine plant community. <i>Journal of Ecology</i> , 2021 , 109, 750	0 <i>€</i> 762	3
382	A threatened ecological community: research advances and priorities for Banksia woodlands. <i>Australian Journal of Botany</i> , 2021 , 69, 53	1.2	6
381	Gut passage time and viability of seeds consumed by Australian marsupials. <i>Australian Mammalogy</i> , 2021 , 43, 363	1.1	1
380	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrient-acquisition strategies. <i>Journal of Ecology</i> , 2021 , 109, 3892	6	2
379	A global review of seed enhancement technology use to inform improved applications in restoration. <i>Science of the Total Environment</i> , 2021 , 798, 149096	10.2	1
378	Glomalin-Related Soil Protein Reflects the Heterogeneity of Substrate and Vegetation in the campo rupestre Ecosystem. <i>Journal of Soil Science and Plant Nutrition</i> , 2021 , 21, 733-743	3.2	2
377	Thinking systemically about ecological interventions: what do system archetypes teach us?. <i>Restoration Ecology</i> , 2020 , 28, 1017-1025	3.1	3

(2018-2020)

376	of land degradation in a semiarid rangeland in Kunene region, Namibia. <i>Land Degradation and Development</i> , 2020 , 31, 2996-3013	4.4	4
375	Bioturbation by a reintroduced digging mammal reduces fuel loads in an urban reserve. <i>Ecological Applications</i> , 2020 , 30, e02018	4.9	9
374	Conservation opportunities on uncontested lands. <i>Nature Sustainability</i> , 2020 , 3, 9-15	22.1	12
373	Translocations of digging mammals and their potential for ecosystem restoration: a review of goals and monitoring programmes. <i>Mammal Review</i> , 2020 , 50, 382-398	5	9
372	No safety net[In the face of climate change: The case of pastoralists in Kunene Region, Namibia. <i>PLoS ONE</i> , 2020 , 15, e0238982	3.7	6
371	Novel resources: opportunities for and risks to species conservation. <i>Frontiers in Ecology and the Environment</i> , 2020 , 18, 558-566	5.5	8
370	Non-native plants and nitrogen addition have little effect on pollination and seed set in 3-year-old restored woodland. <i>Austral Ecology</i> , 2020 , 45, 1156	1.5	1
369	Climate change indirectly reduces breeding frequency of a mobile species through changes in food availability. <i>Ecosphere</i> , 2019 , 10, e02656	3.1	4
368	The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty. <i>Journal of Mammalogy</i> , 2019 , 100, 410-422	1.8	10
367	Rewilding and restoration 2019 , 123-141		
367 366	Rewilding and restoration 2019 , 123-141 Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92	5.7	19
		5.7	
366	Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92 A triage framework for managing novel, hybrid, and designed marine ecosystems. <i>Global Change</i>		
366 365	Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92 A triage framework for managing novel, hybrid, and designed marine ecosystems. <i>Global Change Biology</i> , 2019 , 25, 3215-3223 Using Landsat observations (1988\(\textit{D}\)017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. <i>Remote</i>	11.4	8
366 365 364	Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92 A triage framework for managing novel, hybrid, and designed marine ecosystems. <i>Global Change Biology</i> , 2019 , 25, 3215-3223 Using Landsat observations (1988\(\text{Q}\)017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. <i>Remote Sensing of Environment</i> , 2019 , 232, 111317 Offshore Oil and Gas Platforms as Novel Ecosystems: A Global Perspective. <i>Frontiers in Marine</i>	13.2	8 41
366 365 364 363	Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92 A triage framework for managing novel, hybrid, and designed marine ecosystems. <i>Global Change Biology</i> , 2019 , 25, 3215-3223 Using Landsat observations (1988\(\mathbb{Z}\)017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. <i>Remote Sensing of Environment</i> , 2019 , 232, 111317 Offshore Oil and Gas Platforms as Novel Ecosystems: A Global Perspective. <i>Frontiers in Marine Science</i> , 2019 , 6,	11.4 13.2 4.5	8 41 21
366 365 364 363 362	Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92 A triage framework for managing novel, hybrid, and designed marine ecosystems. <i>Global Change Biology</i> , 2019 , 25, 3215-3223 Using Landsat observations (1988\(\mathbb{Q}\)017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. <i>Remote Sensing of Environment</i> , 2019 , 232, 111317 Offshore Oil and Gas Platforms as Novel Ecosystems: A Global Perspective. <i>Frontiers in Marine Science</i> , 2019 , 6, Beyond ecological modelling: ground-truthing connectivity conservation networks through a design charrette in Western Australia. <i>Landscape and Urban Planning</i> , 2019 , 191, 103122	11.4 13.2 4.5	8 41 21 2

358	Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. <i>Journal of Vegetation Science</i> , 2018 , 29, 285-296	3.1	11
357	Do novel ecosystems provide habitat value for wildlife? Revisiting the physiognomy vs. floristics debate. <i>Ecosphere</i> , 2018 , 9, e02172	3.1	7
356	Restoration Ecology's silver jubilee: innovation, debate, and creating a future for restoration ecology. <i>Restoration Ecology</i> , 2018 , 26, 801-805	3.1	12
355	Temporal longevity of unidirectional and dynamic filters to faunal recolonization in post-mining forest restoration. <i>Austral Ecology</i> , 2018 , 43, 973-988	1.5	1
354	Conversations with Lesley Head about Hope and Grief in the Anthropocene: Reconceptualising Human-Nature Relations. <i>Geographical Research</i> , 2018 , 56, 325-335	1.6	1
353	The evolution of Society for Ecological Restoration's principles and standardsdounter-response to Gann et al <i>Restoration Ecology</i> , 2018 , 26, 431-433	3.1	6
352	Bioturbation by bandicoots facilitates seedling growth by altering soil properties. <i>Functional Ecology</i> , 2018 , 32, 2138-2148	5.6	15
351	Linear infrastructure impacts on landscape hydrology. <i>Journal of Environmental Management</i> , 2018 , 206, 446-457	7.9	9
350	Movers and Stayers: Novel Assemblages in Changing Environments. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 116-128	10.9	37
349	Tradeoffs in demographic mechanisms underlie differences in species abundance and stability. <i>Nature Communications</i> , 2018 , 9, 5047	17.4	7
348	Vehicle tracks are predator highways in intact landscapes. <i>Biological Conservation</i> , 2018 , 228, 281-290	6.2	10
347	Effectiveness of biodiversity offsets: An assessment of a controversial offset in Perth, Western Australia. <i>Biological Conservation</i> , 2018 , 228, 291-300	6.2	12
346	Navigating Novelty and Risk in Resilience Management. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 863-8	73 0.9	16
345	Cultural ecosystem services: Characteristics, challenges and lessons for urban green space research. <i>Ecosystem Services</i> , 2017 , 25, 179-194	6.1	92
344	Conserving reptiles within a multiple-use landscape: determining habitat affiliations of reptile communities in the northern jarrah forest of south-western Australia. <i>Australian Journal of Zoology</i> , 2017 , 65, 21	0.5	3
343	Non-target impacts of weed control on birds, mammals, and reptiles. <i>Ecosphere</i> , 2017 , 8, e01804	3.1	14
342	Expanding the Portfolio: Conserving Nature's Masterpieces in a Changing World. <i>BioScience</i> , 2017 , 67, 568-575	5.7	14
341	Are offsets effective? An evaluation of recent environmental offsets in Western Australia. Biological Conservation, 2017, 206, 249-257	6.2	53

(2015-2017)

340	Lines in the sand: quantifying the cumulative development footprint in the world largest remaining temperate woodland. <i>Landscape Ecology</i> , 2017 , 32, 1969-1986	4.3	4
339	Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. <i>Ecology</i> , 2017 , 98, 500-511	4.6	10
338	Isolation predicts compositional change after discrete disturbances in a global meta-study. <i>Ecography</i> , 2017 , 40, 1256-1266	6.5	15
337	Where to from here? Challenges for restoration and revegetation in a fast-changing world. <i>Rangeland Journal</i> , 2017 , 39, 563	1.5	15
336	Novel ecosystems 2017,		3
335	The Precision Problem in Conservation and Restoration. <i>Trends in Ecology and Evolution</i> , 2016 , 31, 820-8	3 30 .9	57
334	Degraded or just different? Perceptions and value judgements in restoration decisions. <i>Restoration Ecology</i> , 2016 , 24, 153-158	3.1	57
333	Integrating plant- and animal-based perspectives for more effective restoration of biodiversity. <i>Frontiers in Ecology and the Environment</i> , 2016 , 14, 37-45	5.5	88
332	Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. <i>Soil Biology and Biochemistry</i> , 2016 , 93, 119-130	7.5	11
331	Achievable future conditions as a framework for guiding forest conservation and management. <i>Forest Ecology and Management</i> , 2016 , 360, 80-96	3.9	38
330	The relative influence of in situ and neighborhood factors on reptile recolonization in post-mining restoration sites. <i>Restoration Ecology</i> , 2016 , 24, 517-527	3.1	14
329	Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. <i>BioScience</i> , 2016 , 66, 489	- 4 98	118
328	Restoration over time: is it possible to restore trees and non-trees in high-diversity forests?. <i>Applied Vegetation Science</i> , 2016 , 19, 655-666	3.3	26
327	Diverse outcomes of species interactions in an invaded annual plant community. <i>Journal of Plant Ecology</i> , 2016 , rtw102	1.7	2
326	Integrating Conservation and Restoration in a Changing World. <i>BioScience</i> , 2015 , 65, 302-312	5.7	86
325	Climate moderates release from nutrient limitation in natural annual plant communities. <i>Global Ecology and Biogeography</i> , 2015 , 24, 549-561	6.1	35
324	Do state-and-transition models derived from vegetation succession also represent avian succession in restored mine pits?. <i>Ecological Applications</i> , 2015 , 25, 1790-806	4.9	8
323	Biodiversity change in heathland and its relationships with shifting local fire regimes and native species expansion. <i>Journal of Plant Ecology</i> , 2015 , 8, 17-29	1.7	7

322	Contemplating the future: Acting now on long-term monitoring to answer 2050's questions. <i>Austral Ecology</i> , 2015 , 40, 213-224	1.5	33
321	Soil-vegetation type, stem density and species richness influence biomass of restored woodland in south-western Australia. <i>Forest Ecology and Management</i> , 2015 , 344, 53-62	3.9	11
320	Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. <i>Forest Ecology and Management</i> , 2015 , 354, 10-17	3.9	16
319	Managing tree plantations as novel socioecological systems: Australian and North American perspectives. <i>Canadian Journal of Forest Research</i> , 2015 , 45, 1427-1433	1.9	28
318	Advances in restoration ecology: rising to the challenges of the coming decades. <i>Ecosphere</i> , 2015 , 6, art	131	277
317	Edge effects across boundaries between natural and restored jarrah (Eucalyptus marginata) forests in south-western Australia. <i>Austral Ecology</i> , 2015 , 40, 186-197	1.5	11
316	A long-term experimental case study of the ecological effectiveness and cost effectiveness of invasive plant management in achieving conservation goals: bitou bush control in booderee national park in eastern australia. <i>PLoS ONE</i> , 2015 , 10, e0128482	3.7	18
315	Evolving away from the linear model of research: a response to Courchamp et al. <i>Trends in Ecology and Evolution</i> , 2015 , 30, 368-70	10.9	6
314	Long-term data suggest jarrah-forest establishment at restored mine sites is resistant to climate variability. <i>Journal of Ecology</i> , 2015 , 103, 78-89	6	25
313	Living with Invasive Plants in the Anthropocene: The Importance of Understanding Practice and Experience. <i>Conservation and Society</i> , 2015 , 13, 311	1.8	40
312	A Tale of Two Continents: The Growth and Maturation of Landscape Ecology in North America and Australia 2015 , 143-161		
311	Identifying management options for modified vegetation: Application of the novel ecosystems framework to a case study in the Galapagos Islands. <i>Biological Conservation</i> , 2014 , 172, 37-48	6.2	31
310	Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. <i>Ecology</i> , 2014 , 95, 2466-2478	4.6	61
309	Does coarse woody debris density and volume influence the terrestrial vertebrate community in restored bauxite mines?. <i>Forest Ecology and Management</i> , 2014 , 318, 142-150	3.9	14
308	Flexible and Adaptable Restoration: An Example from South Korea. Restoration Ecology, 2014, 22, 271-2	27,81	21
307	Development of a natural practice to adapt conservation goals to global change. <i>Conservation Biology</i> , 2014 , 28, 696-704	6	34
306	Biotic mechanisms of community stability shift along a precipitation gradient. <i>Ecology</i> , 2014 , 95, 1693-7	00 6	112
305	The differential influences of human-induced disturbances on tree regeneration community: a landscape approach. <i>Ecosphere</i> , 2014 , 5, art90	3.1	14

304	Novel ecosystems: concept or inconvenient reality? A response to Murcia et al. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 645-6	10.9	45
303	Conservation opportunities across the world's anthromes. <i>Diversity and Distributions</i> , 2014 , 20, 745-755	5	112
302	Ecological connectivity or Barrier Fence? Critical choices on the agricultural margins of Western Australia. <i>Ecological Management and Restoration</i> , 2014 , 15, 180-190	1.4	16
301	The changing role of history in restoration ecology. <i>Frontiers in Ecology and the Environment</i> , 2014 , 12, 499-506	5.5	224
300	Flower and Fruit Availability along a Forest Restoration Gradient. <i>Biotropica</i> , 2014 , 46, 114-123	2.3	38
299	Resilience in ecology: Abstraction, distraction, or where the action is?. <i>Biological Conservation</i> , 2014 , 177, 43-51	6.2	240
298	Time since fire influences food resources for an endangered species, Carnaby cockatoo, in a fire-prone landscape. <i>Biological Conservation</i> , 2014 , 175, 1-9	6.2	23
297	Under the radar: mitigating enigmatic ecological impacts. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 635	- 46 .9	46
296	Seedling emergence and summer survival after direct seeding for woodland restoration on old fields in south-western Australia. <i>Ecological Management and Restoration</i> , 2014 , 15, 140-146	1.4	25
295	Managing the whole landscape: historical, hybrid, and novel ecosystems. <i>Frontiers in Ecology and the Environment</i> , 2014 , 12, 557-564	5.5	297
294	Specific leaf area responses to environmental gradients through space and time. <i>Ecology</i> , 2014 , 95, 399	-4.160	105
293	Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. <i>Ecological Processes</i> , 2013 , 2,	3.6	58
292	Interdisciplinary historical vegetation mapping for ecological restoration in Galapagos. <i>Landscape Ecology</i> , 2013 , 28, 519-532	4.3	25
291	Overstorey and juvenile response to thinning and drought in a jarrah (Eucalyptus marginata Donn ex Sm.) forest of southwestern Australia. <i>Plant and Soil</i> , 2013 , 365, 291-305	4.2	11
2 90	Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. <i>Ecology</i> , 2013 , 94, 1687-96	4.6	139
289	Primed for Change: Developing Ecological Restoration for the 21st Century. <i>Restoration Ecology</i> , 2013 , 21, 297-304	3.1	115
288	Modeling disturbance-based native invasive species control and its implications for management 2013 , 23, 1331-44		13
287	Benefits of tree mixes in carbon plantings. <i>Nature Climate Change</i> , 2013 , 3, 869-874	21.4	100

286	Finding a middle-ground: The native/non-native debate. <i>Biological Conservation</i> , 2013 , 158, 55-62	6.2	64
285	Ecology. Hurdles and opportunities for landscape-scale restoration. <i>Science</i> , 2013 , 339, 526-7	33.3	264
284	Introduction: Why Novel Ecosystems? 2013 , 1-8		5
283	Towards a Conceptual Framework for Novel Ecosystems 2013 , 16-28		29
282	Case Study: Hole-in-the-Donut, Everglades 2013 , 9-15		
281	Origins of the Novel Ecosystems Concept 2013 , 45-57		35
280	Islands: Where Novelty is the Norm 2013 , 29-44		10
279	Defining Novel Ecosystems 2013 , 58-60		39
278	Perspective: Ecological Novelty is not New 2013 , 61-65		6
277	Novel Ecosystems and Climate Change 2013 , 88-101		5
276	The Extent of Novel Ecosystems: Long in Time and Broad in Space 2013, 66-80		22
275	Case Study: Geographic Distribution and Level of Novelty of Puerto Rican Forests 2013 , 81-87		8
274	Plant Invasions as Builders and Shapers of Novel Ecosystems 2013 , 102-113		14
273	Infectious Disease and Novel Ecosystems 2013 , 114-123		3
272	Case Study: Do Feedbacks from the Soil Biota Secure Novelty in Ecosystems? 2013 , 124-126		0
271	Fauna and Novel Ecosystems 2013 , 127-141		8
270	Case Study: Ecosystem Transformations along the Colorado Front Range: Prairie Dog Interactions with Multiple Components of Global Environmental Change 2013 , 142-149		4
269	Perspective: Plus 🖁 Change, Plus C'est La Mine Chose 2013 , 150-151		

268	Perspective: From Rivets to Rivers 2013 , 153-156	1
267	Incorporating Novel Ecosystems into Management Frameworks 2013 , 157-171	18
266	The Management Framework in Practice [Making Decisions in AtlanticCanadian Meadows: Chasing the Elusive Reference State 2013 , 172-175	1
265	The Management Framework in Practice Prairie Dogs at the Urban Interface: Conservation Solutions When Ecosystem Change Drivers are Beyond the Scope of Management Actions 2013 , 176-179	1
264	The Management Framework in Practice IHow Social Barriers Contribute to Novel Ecosystem Maintenance: Managing Reindeer Populations on St George Island, Pribilof Islands, Alaska 2013 , 180-184	
263	The Management Framework in Practice Designer Wetlands as Novel Ecosystems 2013, 189-191	
262	The Management Framework in Practice Can't See the Wood for the Trees: The Changing Management of the Novel MiconiaCinchona Ecosystem in the Humid Highlands of Santa Cruz Island, Galapagos 2013 , 185-188	2
261	Characterizing Novel Ecosystems: Challenges for Measurement 2013 , 192-204	6
260	Case Study: Novelty Measurement in Pampean Grasslands 2013 , 205-211	1
259	Plant Materials for Novel Ecosystems 2013 , 212-227	2
258	Perspective: Moving to the Dark Side 2013 , 239-241	
257	Case Study: Management of Novel Ecosystems in the Seychelles 2013 , 228-238	13
256	Perspective: Coming of Age in a Trash Forest 2013 , 243-246	1
255	Engaging the Public in Novel Ecosystems 2013 , 247-256	10
254	Valuing Novel Ecosystems 2013 , 257-268	9
253	Case Study: A Rocky Novel Ecosystem: Industrial Origins to Conservation Concern 2013 , 269-271	
252	The Policy Context: Building Laws and Rules that Embrace Novelty 2013 , 272-283	4
251	Ecosystem Stewardship as a Framework for Conservation in a Directionally Changing World 2013 , 326-333	3

250	Perspective: Is Everything a Novel Ecosystem? If so, do we need the Concept? 2013, 345-349		13
249	Case Study: Novel Socio-Ecological Systems in the North: Potential Pathways Toward Ecological and Societal Resilience 2013 , 334-344		5
248	What do we know about, and what do we do about, Novel Ecosystems? 2013, 351-360		2
247	Improving city life: options for ecological restoration in urban landscapes and how these might influence interactions between people and nature. <i>Landscape Ecology</i> , 2013 , 28, 1213-1221	4.3	97
246	Grieving for the Past and Hoping for the Future: Balancing Polarizing Perspectives in Conservation and Restoration. <i>Restoration Ecology</i> , 2013 , 21, 145-148	3.1	41
245	Microhabitat Preference of Egernia napoleonis in Undisturbed Jarrah Forest, and Availability and Introduction of Microhabitats to Encourage Colonization of Restored Forest. <i>Restoration Ecology</i> , 2013 , 21, 722-728	3.1	11
244	Perspective: Lake Burley Griffin 2013 , 284-285		
243	An ecological genetic delineation of local seed-source provenance for ecological restoration. <i>Ecology and Evolution</i> , 2013 , 3, 2138-49	2.8	42
242	Restoration Challenges and Opportunities for Increasing Landscape Connectivity under the New Brazilian Forest Act. <i>Natureza A Conservacao</i> , 2013 , 11, 181-185		28
241	Identifying unidirectional and dynamic habitat filters to faunal recolonisation in restored mine-pits. <i>Journal of Applied Ecology</i> , 2012 , 49, 919-928	5.8	29
240	Interactive effects of altered rainfall and simulated nitrogen deposition on seedling establishment in a global biodiversity hotspot. <i>Oikos</i> , 2012 , 121, 2014-2025	4	21
239	Faustian bargains? Restoration realities in the context of biodiversity offset policies. <i>Biological Conservation</i> , 2012 , 155, 141-148	6.2	327
238	Landscape Ecology 2012 , 45-58		1
237	Time for a change: dynamic urban ecology. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 179-88	10.9	252
236	Straw man or scaffolding? Building the foundations of urban ecology: a reply to McDonnell et al <i>Trends in Ecology and Evolution</i> , 2012 , 27, 256-257	10.9	5
235	Artificial modifications of the coast in response to the Deepwater Horizon oil spill: quick solutions or long-term liabilities?. <i>Frontiers in Ecology and the Environment</i> , 2012 , 10, 44-49	5.5	26
234	The Ridgefield Multiple Ecosystem Services Experiment: Can restoration of former agricultural land achieve multiple outcomes?. <i>Agriculture, Ecosystems and Environment</i> , 2012 , 163, 14-27	5.7	47
233	Environmental Management and Restoration in a Changing Climate 2012 , 23-29		4

232	Microsite and litter cover effects on seed banks vary with seed size and dispersal mechanisms: implications for revegetation of degraded saline land. <i>Plant Ecology</i> , 2012 , 213, 1145-1155	1.7	13
231	Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini, Malaysia. <i>Biological Invasions</i> , 2012 , 14, 1029-	1044	21
230	Home Range Size and Micro-habitat Density Requirements of Egernia napoleonis: Implications for Restored Jarrah Forest of South Western Australia. <i>Restoration Ecology</i> , 2012 , 20, 740-746	3.1	9
229	Improving biodiversity monitoring. <i>Austral Ecology</i> , 2012 , 37, 285-294	1.5	100
228	Australia: better solutions to wildfires. <i>Nature</i> , 2012 , 482, 471	50.4	
227	Estimating nutrient budgets for prescribed thinning in a regrowth eucalyptus forest in south-west Australia. <i>Forestry</i> , 2012 , 85, 51-61	2.2	8
226	Avoiding bio-perversity from carbon sequestration solutions. <i>Conservation Letters</i> , 2012 , 5, 28-36	6.9	79
225	Engaging with novel ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 423-423	5.5	32
224	Intervention Ecology: Applying Ecological Science in the Twenty-first Century. <i>BioScience</i> , 2011 , 61, 442	-450	268
223	The role of botanic gardens in the science and practice of ecological restoration. <i>Conservation Biology</i> , 2011 , 25, 265-75	6	38
222	Movement patterns by Egernia napoleonis following reintroduction into restored jarrah forest. <i>Wildlife Research</i> , 2011 , 38, 475	1.8	7
221	Opportunities and Challenges for Ecological Restoration within REDD+. <i>Restoration Ecology</i> , 2011 , 19, 683-689	3.1	78
220	Don't judge species on their origins. <i>Nature</i> , 2011 , 474, 153-4	50.4	613
219	Microsite and litter cover effects on soil conditions and seedling recruitment in a saline agricultural system. <i>Plant and Soil</i> , 2011 , 348, 397-409	4.2	4
218	Seed mass and summer drought survival in a Mediterranean-climate ecosystem. <i>Plant Ecology</i> , 2011 , 212, 1479-1489	1.7	34
217	Newly discovered landscape traps produce regime shifts in wet forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 15887-91	11.5	198
216	How many mature microhabitats does a slow-recolonising reptile require? Implications for restoration of bauxite minesites in south-western Australia. <i>Australian Journal of Zoology</i> , 2011 , 59, 9	0.5	12
215	Woody shrubs and herbivory influence tree encroachment in the sandplain heathlands of southwestern Australia. <i>Journal of Applied Ecology</i> , 2010 , 47, 441-450	5.8	14

214	An overview of the ecology, management and conservation of Australia temperate woodlands. <i>Ecological Management and Restoration</i> , 2010 , 11, 201-209	1.4	14
213	Improved probability of detection of ecological "surprises". <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 21957-62	11.5	145
212	Guiding concepts for park and wilderness stewardship in an era of global environmental change. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 483-490	5.5	93
211	High genetic diversity in a clonal relict Alexgeorgea nitens (Restionaceae): implications for ecological restoration. <i>Australian Journal of Botany</i> , 2010 , 58, 206	1.2	16
210	Natural resource management at four social scales: psychological type matters. <i>Environmental Management</i> , 2010 , 45, 590-602	3.1	6
209	Restoration of OCBILs in south-western Australia: Response to Hopper. <i>Plant and Soil</i> , 2010 , 330, 15-18	4.2	11
208	Invasion Ecology and Restoration Ecology: Parallel Evolution in Two Fields of Endeavour 2010 , 61-69		3
207	Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. <i>Population Ecology</i> , 2009 , 51, 237-243	2.1	51
206	Woodland restoration in Scotland: ecology, history, culture, economics, politics and change. <i>Journal of Environmental Management</i> , 2009 , 90, 2857-65	7.9	41
205	Defining plant functional groups to guide rare plant management. <i>Plant Ecology</i> , 2009 , 204, 207-216	1.7	20
204	Diversity in current ecological thinking: implications for environmental management. <i>Environmental Management</i> , 2009 , 43, 17-27	3.1	63
203	Sample Size Effects on Estimates of Population Genetic Structure: Implications for Ecological Restoration. <i>Restoration Ecology</i> , 2009 , 17, 837-844	3.1	23
202	Looking for the Silver Lining: Making the Most of Failure. <i>Restoration Ecology</i> , 2009 , 17, 1-3	3.1	42
201	Do Thinning and Burning Sites Revegetated after Bauxite Mining Improve Habitat for Terrestrial Vertebrates?. <i>Restoration Ecology</i> , 2009 , 18, 300-310	3.1	22
200	Ecological restoration in the light of ecological history. <i>Science</i> , 2009 , 325, 567-9	33.3	395
199	Threshold models in restoration and conservation: a developing framework. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 271-9	10.9	446
198	Novel ecosystems: implications for conservation and restoration. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 599-605	10.9	1184
197	Does habitat structure influence capture probabilities? A study of reptiles in a eucalypt forest. <i>Wildlife Research</i> , 2009 , 36, 509	1.8	18

196 V.7 Restoration Ecology **2009**, 566-572

195	IV.2 Landscape Pattern and Biodiversity 2009 , 431-437		4
194	Broadening the Extinction Debate: Population Deletions and Additions in California and Western Australia. <i>Conservation Biology</i> , 2008 , 12, 271-283	6	7
193	Spontaneous Succession versus Technical Reclamation in the Restoration of Disturbed Sites. <i>Restoration Ecology</i> , 2008 , 16, 363-366	3.1	268
192	Some practical suggestions for improving engagement between researchers and policy-makers in natural resource management. <i>Ecological Management and Restoration</i> , 2008 , 9, 182-186	1.4	111
191	Land-use legacy and the persistence of invasive Avena barbata on abandoned farmland. <i>Journal of Applied Ecology</i> , 2008 , 45, 1576-1583	5.8	45
190	Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. <i>Conservation Letters</i> , 2008 , 1, 129-135	6.9	96
189	Restoration Ecology: Interventionist Approaches for Restoring and Maintaining Ecosystem Function in the Face of Rapid Environmental Change. <i>Annual Review of Environment and Resources</i> , 2008 , 33, 39-61	17.2	210
188	What's new about old fields? Land abandonment and ecosystem assembly. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 104-12	10.9	555
187	Ecological restoration for future sustainability in a changing environment. <i>Ecoscience</i> , 2008 , 15, 53-64	1.1	146
186	Management of novel ecosystems: are novel approaches required?. Frontiers in Ecology and the Environment, 2008, 6, 547-553	5.5	360
185	A checklist for ecological management of landscapes for conservation. <i>Ecology Letters</i> , 2008 , 11, 78-91	10	409
184	Restoring Jarrah Forest after Bauxite Mining in Western Australia IThe Effect of Fertilizer on Floristic Diversity and Composition 2008 ,		3
183	Morphological and molecular variation in Conospermum triplinervium (Proteaceae), the tree smokebush: implications for bushland restoration. <i>Australian Journal of Botany</i> , 2008 , 56, 451	1.2	5
182	LONG-TERM DATA REVEAL COMPLEX DYNAMICS IN GRASSLAND IN RELATION TO CLIMATE AND DISTURBANCE. <i>Ecological Monographs</i> , 2007 , 77, 545-568	9	101
181	The need for pluralism in landscape models: a reply to Dunn and Majer. <i>Oikos</i> , 2007 , 116, 1419-1421	4	21
180	Riparian vegetation: degradation, alien plant invasions, and restoration prospects. <i>Diversity and Distributions</i> , 2007 , 13, 126-139	5	555
179	The impact of lower urinary tract symptoms and comorbidities on quality of life: the BACH and UREPIK studies. <i>BJU International</i> , 2007 , 99, 347-54	5.6	116

178	Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. <i>Journal of Applied Ecology</i> , 2007 , 44, 435-445	5.8	137
177	Setting Effective and Realistic Restoration Goals: Key Directions for Research. <i>Restoration Ecology</i> , 2007 , 15, 354-357	3.1	220
176	Habitat RestorationDo We Know What Welle Doing?. Restoration Ecology, 2007, 15, 382-390	3.1	204
175	Jarrah Forest Ecosystem Restoration: A Foreword. <i>Restoration Ecology</i> , 2007 , 15, S1-S2	3.1	7
174	Synthesis: Is Alcoa Successfully Restoring a Jarrah Forest Ecosystem after Bauxite Mining in Western Australia?. <i>Restoration Ecology</i> , 2007 , 15, S137-S144	3.1	66
173	Restoration Ecology: Are We Making an Impact?. <i>Restoration Ecology</i> , 2007 , 15, 597-600	3.1	7
172	Comparison of colonisation by Phytophthora cinnamomi in detached stem tissue of Eucalyptus marginata in relation to site disease status. <i>Australasian Plant Pathology</i> , 2007 , 36, 498	1.4	3
171	Should we ditch impact factors?. <i>BMJ, The</i> , 2007 , 334, 569	5.9	14
170	Managing plant populations in fragmented landscapes: restoration or gardening?. <i>Australian Journal of Botany</i> , 2007 , 55, 371	1.2	15
169	The importance of grasstrees (Xanthorrhoea preissii) as habitat for mardo (Antechinus flavipes leucogaster) during post-fire recovery. <i>Wildlife Research</i> , 2007 , 34, 640	1.8	9
168	Integrating Restoration and Succession 2007 , 168-179		32
167	Ecology of the western bearded dragon (Pogona minor) in unmined forest and forest restored after bauxite mining in south-west Western Australia. <i>Australian Journal of Zoology</i> , 2007 , 55, 107	0.5	14
166	Restoration as a Process of Assembly and Succession Mediated by Disturbance 2007 , 150-167		22
165	Overcoming barriers to effective public communication of ecology. <i>Frontiers in Ecology and the Environment</i> , 2006 , 4, 496-497	5.5	6
164	Novel ecosystems: theoretical and management aspects of the new ecological world order. <i>Global Ecology and Biogeography</i> , 2006 , 15, 1-7	6.1	1218
163	Molecular markers detect multiple origins of Agonis flexuosa (Myrtaceae) plants used in urban bushland restoration. <i>Ecological Management and Restoration</i> , 2006 , 7, 234-235	1.4	4
162	Ecological Restoration and Global Climate Change. Restoration Ecology, 2006, 14, 170-176	3.1	576
161	Identifying Linkages among Conceptual Models of Ecosystem Degradation and Restoration: Towards an Integrative Framework. <i>Restoration Ecology</i> , 2006 , 14, 369-378	3.1	138

(2004-2006)

160	Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. <i>Austral Ecology</i> , 2006 , 31, 164-175	1.5	27	
159	Legacy of Land-Use Evident in Soils of Western Australia Wheatbelt. <i>Plant and Soil</i> , 2006 , 280, 189-207	4.2	55	
158	Science and Policy in Natural Resource Management: Understanding System Complexity 2006,		21	
157	Vegetation change: a reunifying concept in plant ecology. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2005 , 7, 69-76	3	41	
156	Distribution of understorey species in forest affected by Phytophthora cinnamomi in south-western Western Australia. <i>Australian Journal of Botany</i> , 2005 , 53, 813	1.2	9	
155	Restoration ecology and the role of soil biodiversity 2005 , 319-342		5	
154	The Future of Restoration Ecology: Challenges and Opportunities. <i>Restoration Ecology</i> , 2005 , 13, 239-24	13 .1	18	
153	Categorizing Australian landscapes as an aid to assessing the generality of landscape management guidelines. <i>Global Ecology and Biogeography</i> , 2005 , 14, 1-15	6.1	44	
152	Integrating a global agro-climatic classification with bioregional boundaries in Australia. <i>Global Ecology and Biogeography</i> , 2005 , 14, 197-212	6.1	121	
151	Assessing the ecological risk from secondary salinity: A framework addressing questions of scale and threshold responses. <i>Austral Ecology</i> , 2005 , 30, 537-545	1.5	19	
150	Implications of Current Ecological Thinking for Biodiversity Conservation: a Review of the Salient Issues. <i>Ecology and Society</i> , 2005 , 10,	4.1	105	
149	Restoration ecology and landscape ecology 2005 , 217-229		2	
148	Landscapes, ecology and wildlife management in highly modified environments - an Australian perspective. <i>Wildlife Research</i> , 2005 , 32, 389	1.8	17	
147	The Working for Water programme in South Africa: the science behind the success. <i>Diversity and Distributions</i> , 2004 , 10, 501-503	5	26	
146	Ecological restoration in the slipstream of agricultural policy in the old and new world. <i>Agriculture, Ecosystems and Environment</i> , 2004 , 103, 601-611	5.7	23	
145	The influence of local elevation on the effects of secondary salinity in remnant eucalypt woodlands: Changes in understorey communities. <i>Plant and Soil</i> , 2004 , 265, 253-266	4.2	8	
144	The influence of local elevation on soil properties and tree health in remnant eucalypt woodlands affected by secondary salinity. <i>Plant and Soil</i> , 2004 , 265, 175-188	4.2	12	
143	Effects of Invasive Alien Plants on Fire Regimes. <i>BioScience</i> , 2004 , 54, 677	5.7	958	

142	Long-term impact of prescribed burning on the nutrient status and fuel loads of rehabilitated bauxite mines in Western Australia. <i>Forest Ecology and Management</i> , 2004 , 190, 227-239	3.9	19
141	Fauna conservation in Australian plantation forests 🖟 review. <i>Biological Conservation</i> , 2004 , 119, 151-1	586.2	241
140	Restoration Ecology: The Challenge of Social Values and Expectations. <i>Frontiers in Ecology and the Environment</i> , 2004 , 2, 43	5.5	53
139	Resilience, Adaptive Capacity, and the "Lock-in Trap" of the Western Australian Agricultural Region. <i>Ecology and Society</i> , 2004 , 9,	4.1	188
138	What happens if we cannot fix it? Triage, palliative care and setting priorities in salinising landscapes. <i>Australian Journal of Botany</i> , 2003 , 51, 647	1.2	37
137	Natural ecosystems: Pattern and process in relation to local and landscape diversity in southwestern Australian woodlands. <i>Plant and Soil</i> , 2003 , 257, 371-378	4.2	16
136	Triage: How do we prioritize health care for landscapes?. <i>Ecological Management and Restoration</i> , 2003 , 4, S39-S45	1.4	53
135	Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. <i>Australian Journal of Botany</i> , 2003 , 51, 471	1.2	239
134	The wheatbelt of Western Australia. <i>Pacific Conservation Biology</i> , 2003 , 9, 9	1.2	6
133	An integrated approach to landscape science and management 2002 , 412-430		5
132	Distribution of Phytophthora cinnamomi in the northern jarrah (Eucalyptus marginata) forest of Western Australia in relation to dieback age and topography. <i>Australian Journal of Botany</i> , 2002 , 50, 10	7 ^{1.2}	23
131	Conservation Where People Live and Work. <i>Conservation Biology</i> , 2002 , 16, 330-337	6	541
130	Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: Impacts and possible management responses. <i>Austral Ecology</i> , 2002 , 27, 546-564	1.5	92
129	Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. <i>Landscape Ecology</i> , 2002 , 17, 355-365	4.3	515
128	The ecological context: a landscape perspective 2002 , 24-46		12
127	Vegetation of Phytophthora cinnamomi-infested and adjoining uninfested sites in the northern jarrah (Eucalyptus marginata) forest of Western Australia. <i>Australian Journal of Botany</i> , 2002 , 50, 277	1.2	32
126	Landscape and Regional Planning for Conservation: Issues and Practicalities 2002, 360-380		6
125			

124	Synergisms among Habitat Fragmentation, Livestock Grazing, and Biotic Invasions in Southwestern Australia. <i>Conservation Biology</i> , 2001 , 15, 1522-1528	6	159
123	Restoration Ecology: Repairing the Earth's Ecosystems in the New Millennium. <i>Restoration Ecology</i> , 2001 , 9, 239-246	3.1	557
122	Degrading Landscapes: Lessons from Palliative Care. <i>EcoHealth</i> , 2001 , 7, 203-213		4
121	Viewing invasive species removal in a whole-ecosystem context. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 454-459	10.9	789
120	Additions to the host range of Phytophthora cinnamomi in the jarrah (Eucalyptus marginata) forest of Western Australia. <i>Australian Journal of Botany</i> , 2001 , 49, 193	1.2	7
119	Mediterranean-Climate Ecosystems. <i>Ecological Studies</i> , 2001 , 157-199	1.1	26
118	Establishment of Perennial Shrub and Tree Species in Degraded Eucalyptus salmonophloia (Salmon Gum) Remnant Woodlands: Effects of Restoration Treatments. <i>Restoration Ecology</i> , 2000 , 8, 135-143	3.1	53
117	Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. <i>Austral Ecology</i> , 2000 , 25, 36-47	1.5	249
116	Deliberate Introductions of Species: Research Needs. <i>BioScience</i> , 1999 , 49, 619-630	5.7	189
115	A Framework for Conceptualizing Human Effects on Landscapes and Its Relevance to Management and Research Models. <i>Conservation Biology</i> , 1999 , 13, 1282-1292	6	466
114	Designing mimics from incomplete data sets: salmon gum woodland and heathland ecosystems in South West Australia. <i>Agroforestry Systems</i> , 1999 , 45, 365-394	2	5
113	Moving from descriptive to predictive ecology. <i>Agroforestry Systems</i> , 1999 , 45, 43-55	2	22
112	What can agriculture learn from natural ecosystems?. <i>Agroforestry Systems</i> , 1999 , 45, 425-438	2	5
111	Incorporating Geological Effects in Modeling of Revegetation Strategies for Salt-Affected Landscapes. <i>Environmental Management</i> , 1999 , 24, 99-109	3.1	10
110	Recovery of shrubland communities on abandoned farmland in southwestern Australia: soils, plants, birds and arthropods. <i>Pacific Conservation Biology</i> , 1999 , 5, 163	1.2	9
109	Clark Kent or Superman: Where Is the Phone Booth for Landscape Ecology? 1999 , 11-23		7
108	Major faults and the development of dryland salinity in the western wheatbelt of Western Australia. <i>Hydrology and Earth System Sciences</i> , 1998 , 2, 77-91	5.5	6
107	Impacts of Land Use on Biodiversity in Southwestern Australia. <i>Ecological Studies</i> , 1998 , 81-106	1.1	7

106	Broadening the Extinction Debate: Population Deletions and Additions in California and Western Australia. <i>Conservation Biology</i> , 1998 , 12, 271-283	6	96
105	Exotic plant invasion and understorey species richness: a comparison of two types of eucalypt woodland in agricultural Western Australia. <i>Pacific Conservation Biology</i> , 1998 , 4, 21	1.2	10
104	Computer modelling of the effect of revegetation strategies on salinity in the western wheatbelt of Western Australia 2 <i>Soil Research</i> , 1998 , 36, 131	1.8	4
103	Temperate Eucalypt Woodlands: a Review of Their Status, Processes Threatening Their Persistence and Techniques for Restoration. <i>Australian Journal of Botany</i> , 1997 , 45, 949	1.2	182
102	Biotic Control over the Functioning of Ecosystems. <i>Science</i> , 1997 , 277, 500-504	33.3	804
101	Future landscapes and the future of landscape ecology. Landscape and Urban Planning, 1997, 37, 1-9	7.7	151
100	Woodland Restoration in the Western Australian Wheatbelt: A Conceptual Framework Using a State and Transition Model. <i>Restoration Ecology</i> , 1997 , 5, 28-35	3.1	83
99	A model of litter harvesting by the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), with particular reference to nutrient dynamics. <i>Ecological Research</i> , 1996 , 11, 69-78	1.9	2
98	Biodiversity in Australia. <i>Conservation Biology</i> , 1996 , 10, 1485-1486	6	
97	Towards a Conceptual Framework for Restoration Ecology. <i>Restoration Ecology</i> , 1996 , 4, 93-110	3.1	858
96	Fragmentation, Disturbance, and Plant Distribution: Mistletoes in Woodland Remnants in the Western Australian Wheatbelt. <i>Conservation Biology</i> , 1995 , 9, 426-438	6	60
95	Spatial and temporal variability in California annual grassland: results from a long-term study. Journal of Vegetation Science, 1995 , 6, 43-56	3.1	107
94	An Integrated Approach to the Ecology and Management of Plant Invasions. <i>Conservation Biology</i> , 1995 , 9, 761-770	6	379
93	Mediterranean-Type Ecosystems: Opportunities and Constraints for Studying the Function of Biodiversity. <i>Ecological Studies</i> , 1995 , 1-42	1.1	30
92	Function of Biodiversity in the Mediterranean-Type Ecosystems of Southwestern Australia. <i>Ecological Studies</i> , 1995 , 233-284	1.1	12
91	Landscape ecology and conservation: moving from description to application. <i>Pacific Conservation Biology</i> , 1994 , 1, 170	1.2	35
90	Influence of vegetation and soil types on the wheatbelt termite, Drepanotermes tamminensis (Hill), in the Western Australian wheatbelt. <i>Ecological Research</i> , 1994 , 9, 151-158	1.9	6
89	Contribution of the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. <i>Ecological Research</i> , 1994 , 9, 351-356	1.9	12

88	Pine Invasions in the Southern Hemisphere: Determinants of Spread and Invadability. <i>Journal of Biogeography</i> , 1994 , 21, 511	4.1	268
87	Dynamics of vegetation mosaics: Can we predict responses to global change?. <i>Ecoscience</i> , 1994 , 1, 346-:	3 5 6	33
86	Landscape heterogeneity indices: problems of scale and applicability, with particular reference to animal habitat description. <i>Pacific Conservation Biology</i> , 1994 , 1, 183	1.2	46
85	Landscape-scale disturbances and regeneration in semi-arid woodlands of southwestern Australia. <i>Pacific Conservation Biology</i> , 1994 , 1, 214	1.2	63
84	Can revegetation assist in the conservation of biodiversity in agricultural areas?. <i>Pacific Conservation Biology</i> , 1994 , 1, 29	1.2	62
83	Resource webs in Mediterranean-type climates. <i>Tasks for Vegetation Science</i> , 1994 , 73-81	0.9	
82	Changes in Biota 1993 , 65-106		21
81	Harvesting rate of the termite, Drepanotermes tamminensis (Hill) within native woodland and shrubland of the Western Australian wheatbelt. <i>Ecological Research</i> , 1993 , 8, 269-275	1.9	10
80	Fragmented landscapes in Western Australia: Introduction. <i>Biological Conservation</i> , 1993 , 64, 183-184	6.2	5
79	The Kellerberrin project on fragmented landscapes: A review of current information. <i>Biological Conservation</i> , 1993 , 64, 185-192	6.2	82
78	Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. <i>Biological Conservation</i> , 1993 , 64, 193-201	6.2	151
77	Integrated landscape ecology: A Western Australian perspective. <i>Biological Conservation</i> , 1993 , 64, 231	-263.8	56
76	Conservation Management in Fragmented Systems 1993 , 279-296		1
75	Conclusions. Can We Reintegrate Fragmented Landscapes? 1993 , 299-309		2
74	Integrating Economic and Ecological Considerations: A Theoretical Framework 1993, 209-244		9
73	Disturbance, Diversity, and Invasion: Implications for Conservation 1992 , 164-180		1
72	Disturbance, Diversity, and Invasion: Implications for Conservation. <i>Conservation Biology</i> , 1992 , 6, 324-3	337	1620
71	The role of corridors in conservation: Solution or bandwagon?. <i>Trends in Ecology and Evolution</i> , 1992 , 7, 389-92	10.9	236

70	Influence of fire and soil nutrients on native and non-native annuals at remnant vegetation edges in the Western Australian wheatbelt. <i>Journal of Vegetation Science</i> , 1992 , 3, 101-108	3.1	84
69	Interactions between annuals and woody perennials in a Western Australian nature reserve. <i>Journal of Vegetation Science</i> , 1991 , 2, 643-654	3.1	63
68	Biological Consequences of Ecosystem Fragmentation: A Review. <i>Conservation Biology</i> , 1991 , 5, 18-32	6	2411
67	Effects of Rainfall Variability and Gopher Disturbance on Serpentine Annual Grassland Dynamics. <i>Ecology</i> , 1991 , 72, 59-68	4.6	160
66	Remote Sensing of Spatial and Temporal Dynamics of Vegetation. <i>Ecological Studies</i> , 1990 , 203-219	1.1	25
65	Control of shrub establishment by springtime soil water availability in an annual grassland. <i>Oecologia</i> , 1989 , 81, 62-66	2.9	51
64	Classification of vegetation in the Western Australian wheatbelt using Landsat MSS data. <i>Plant Ecology</i> , 1989 , 80, 91-105		24
63	Effects of fertiliser addition and subsequent gopher disturbance on a serpentine annual grassland community. <i>Oecologia</i> , 1988 , 75, 291-295	2.9	78
62	Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. <i>Austral Ecology</i> , 1988 , 13, 171-179	1.5	173
61	Spatial variability of experimental fires in south-west Western Australia. Austral Ecology, 1988, 13, 295-	2 9 . 9	30
60	Vegetation, Fire and Herbivore Interactions in Heathland. Advances in Ecological Research, 1987, 16, 87-	14.3	70
59	LEAF AND SHOOT DEMOGRAPHY IN BACCHARIS SHRUBS OF DIFFERENT AGES. <i>American Journal of Botany</i> , 1987 , 74, 1111-1115	2.7	2
58	Invasion of an annual grassland in Northern California by Baccharis pilularis ssp. consanguinea. <i>Oecologia</i> , 1987 , 72, 461-465	2.9	50
57	Gophers and grassland: a model of vegetation response to patchy soil disturbance. <i>Plant Ecology</i> , 1987 , 69, 141-146		58
56	LEAF AND SHOOT DEMOGRAPHY IN BACCHARIS SHRUBS OF DIFFERENT AGES 1987 , 74, 1111		4
55	Gophers and grassland: a model of vegetation response to patchy soil disturbance 1987, 141-146		
54	Heavy Metal Concentrations in Plants Growing on a Copper Mine Spoil in the Grand Canyon, Arizona. <i>American Midland Naturalist</i> , 1986 , 115, 277	0.7	16
53	Community changes following shrub invasion of grassland. <i>Oecologia</i> , 1986 , 70, 508-513	2.9	120

(1981-1986)

52	Biomass accumulation and resource utilization in co-occurring grassland annuals. <i>Oecologia</i> , 1986 , 70, 555-558	2.9	38
51	Resilience at the individual plant level. <i>Tasks for Vegetation Science</i> , 1986 , 65-82	0.9	11
50	Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. <i>Oecologia</i> , 1985 , 67, 342-351	2.9	211
49	Harvester ant foraging and plant species distribution in annual grassland. <i>Oecologia</i> , 1985 , 67, 519-523	2.9	78
48	VEGETATIVE REGROWTH FOLLOWING CUTTING IN THE SHRUB BACCHARIS PILULARIS SSP. CONSANGUINEA (DC) C. B. WOLF 1985 , 72, 514		13
47	Studies on Fire in Scottish Heathland Communities: I. Fire Characteristics. <i>Journal of Ecology</i> , 1984 , 72, 223	6	53
46	Studies on Fire in Scottish Heathland Communities: III. Vital Attributes of the Species. <i>Journal of Ecology</i> , 1984 , 72, 963	6	35
45	Studies on Fire in Scottish Heathland Communities II. Post-Fire Vegetation Development. <i>Journal of Ecology</i> , 1984 , 72, 585	6	59
44	Markov models in the study of post-fire succession in heathland communities. <i>Plant Ecology</i> , 1984 , 56, 17-30		41
43	Markov models and initial floristic composition in heathland vegetation dynamics. <i>Plant Ecology</i> , 1984 , 56, 31-43		34
42	Shoot regeneration after fire or freezing temperatures and its relation to plant life-form for some heathland species. <i>Plant Ecology</i> , 1984 , 55, 181-189		4
41	Length of burning rotation and community composition in high-level Calluna-Eriophorum bog in N England. <i>Plant Ecology</i> , 1984 , 57, 129-136		31
40	Seed Dynamics in Calluna-Arctostaphylos Heath in North-Eastern Scotland. <i>Journal of Ecology</i> , 1984 , 72, 855	6	55
39	The Use of IThermocolor' Pyrometers in the Study of Heath Fire Behaviour. <i>Journal of Ecology</i> , 1984 , 72, 241	6	36
38	Possible Chemical Interactions among Heathland Plants. <i>Oikos</i> , 1984 , 43, 23	4	10
37	The Effects of Planting Technique on the Growth of Ammophila arenaria (L.) Link and Lymus arenarius (L.) Hochst. <i>Journal of Applied Ecology</i> , 1983 , 20, 659	5.8	5
36	Community dynamics in relation to management of heathland vegetation in Scotland. <i>Plant Ecology</i> , 1981 , 46-47, 149-155		29
35	A study of pattern and process in coastal vegetation using principal components analysis. <i>Plant Ecology</i> , 1981 , 44, 137-153		10

34	The Diverse Impacts of Grazing, Fire and Weeds: How Ecological Theory Can Inform Conservation Management	t <u>1</u> 11-130
33	Edge Effects165-178	2
32	Emergent Properties of Land Mosaics: Implications for Land Management and Biodiversity Conservation199-2	14
31	The Whole Elephant: Classification and Terminology as Tools for Achieving Generality in Landscape Ecology7-2	1
30	Corridors, Connectivity and Biological Conservation249-262	1
29	Managing Landscapes for Vulnerable, Invasive and Disease Species311-329	
28	Tools for Conserving Managing Individual Plant Species in Dynamic Landscapes330-342	1
27	Enacting Landscape Design: From Specific Cases to General Principles22-34	5
26	Ecosystems, Ecosystem Processes and Global Change: Implications for Landscape Design347-364	
25	Landscape Models for Use in Studies of Landscape Change and Habitat Fragmentation35-48	1
24	Does Conservation Need Landscape Ecology? A Perspective from Both Sides of the Divide477-493	
23	Goals, Targets and Priorities for Landscape-Scale Restoration511-526	1
22	A Contribution to the Development of a Conceptual Framework for Landscape Management: A Landscape State and Transition Model527-545	
21	Remnant Geometry, Landscape Morphology, and Principles and Procedures for Landscape Design53-63	
20	Habitat and Landscape Design: Concepts, Constraints and Opportunities81-95	
19	Advances in detecting landscape changes at multiple scales: examples from northern Australia161-172	1
18	Transferring ecological knowledge to landscape planning: a design method for robust corridors227-245	5
17	Integrative landscape research: facts and challenges246-268	9

LIST OF PUBLICATIONS

16	Spatial heterogeneity and ecosystem processes62-77	8
15	Landscape ecology: the state-of-the-science271-287	22
14	Perspectives and prospects of landscape ecology3-8	2
13	Adequate data of known accuracy are critical to advancing the field of landscape ecology11-38	7
12	Landscape pattern analysis: key issues and challenges39-61	19
11	Determining patternprocess relationships in heterogeneous landscapes92-114	3
10	Scale and scaling: a cross-disciplinary perspective115-142	52
9	Optimization of landscape pattern143-160	
8	Using landscape ecology to make sense of Australia's last frontier214-226	1
7	Applying landscape-ecological principles to regional conservation: the WildCountry Project in Australia192	2 -213 5
6	Perspective: A Tale of Two Natures291-295	
5	Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. <i>Journal of Applied Ecology</i> ,	8 4
4	Ecosystem roles and conservation status of bioturbator mammals. <i>Mammal Review</i> , 5	1
3	Case Study: Shale Bings in Central Scotland: From Ugly Blots on the Landscape to Cultural and Biological Heritage286-289	1
2	Concerns about Novel Ecosystems296-309	9
1	Novel Urban Ecosystems and Ecosystem Services310-325	10