Richard Hobbs

List of Publications by Citations

Source: https://exaly.com/author-pdf/9118993/richard-hobbs-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

393
papers

30,983
citations

79
h-index
g-index

422
ext. papers

5
avg, IF

171
g-index
L-index

#	Paper	IF	Citations
393	Biological Consequences of Ecosystem Fragmentation: A Review. <i>Conservation Biology</i> , 1991 , 5, 18-32	6	2411
392	Disturbance, Diversity, and Invasion: Implications for Conservation. <i>Conservation Biology</i> , 1992 , 6, 324-3	337	1620
391	Novel ecosystems: theoretical and management aspects of the new ecological world order. <i>Global Ecology and Biogeography</i> , 2006 , 15, 1-7	6.1	1218
390	Novel ecosystems: implications for conservation and restoration. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 599-605	10.9	1184
389	Effects of Invasive Alien Plants on Fire Regimes. <i>BioScience</i> , 2004 , 54, 677	5.7	958
388	Towards a Conceptual Framework for Restoration Ecology. <i>Restoration Ecology</i> , 1996 , 4, 93-110	3.1	858
387	Biotic Control over the Functioning of Ecosystems. <i>Science</i> , 1997 , 277, 500-504	33.3	804
386	Viewing invasive species removal in a whole-ecosystem context. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 454-459	10.9	789
385	Don't judge species on their origins. <i>Nature</i> , 2011 , 474, 153-4	50.4	613
384	Ecological Restoration and Global Climate Change. Restoration Ecology, 2006, 14, 170-176	3.1	576
383	Restoration Ecology: Repairing the Earth's Ecosystems in the New Millennium. <i>Restoration Ecology</i> , 2001 , 9, 239-246	3.1	557
382	What's new about old fields? Land abandonment and ecosystem assembly. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 104-12	10.9	555
381	Riparian vegetation: degradation, alien plant invasions, and restoration prospects. <i>Diversity and Distributions</i> , 2007 , 13, 126-139	5	555
380	Conservation Where People Live and Work. <i>Conservation Biology</i> , 2002 , 16, 330-337	6	541
379	Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. <i>Landscape Ecology</i> , 2002 , 17, 355-365	4.3	515
378	A Framework for Conceptualizing Human Effects on Landscapes and Its Relevance to Management and Research Models. <i>Conservation Biology</i> , 1999 , 13, 1282-1292	6	466
377	Threshold models in restoration and conservation: a developing framework. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 271-9	10.9	446

376	A checklist for ecological management of landscapes for conservation. <i>Ecology Letters</i> , 2008 , 11, 78-91	10	409
375	Ecological restoration in the light of ecological history. <i>Science</i> , 2009 , 325, 567-9	33.3	395
374	An Integrated Approach to the Ecology and Management of Plant Invasions. <i>Conservation Biology</i> , 1995 , 9, 761-770	6	379
373	Management of novel ecosystems: are novel approaches required?. Frontiers in Ecology and the Environment, 2008 , 6, 547-553	5.5	360
372	Faustian bargains? Restoration realities in the context of biodiversity offset policies. <i>Biological Conservation</i> , 2012 , 155, 141-148	6.2	327
371	Managing the whole landscape: historical, hybrid, and novel ecosystems. <i>Frontiers in Ecology and the Environment</i> , 2014 , 12, 557-564	5.5	297
370	Advances in restoration ecology: rising to the challenges of the coming decades. <i>Ecosphere</i> , 2015 , 6, art	13311	277
369	Intervention Ecology: Applying Ecological Science in the Twenty-first Century. <i>BioScience</i> , 2011 , 61, 442	- 4 5 <mark>,</mark> 0	268
368	Spontaneous Succession versus Technical Reclamation in the Restoration of Disturbed Sites. <i>Restoration Ecology</i> , 2008 , 16, 363-366	3.1	268
367	Pine Invasions in the Southern Hemisphere: Determinants of Spread and Invadability. <i>Journal of Biogeography</i> , 1994 , 21, 511	4.1	268
366	Ecology. Hurdles and opportunities for landscape-scale restoration. <i>Science</i> , 2013 , 339, 526-7	33.3	264
365	Time for a change: dynamic urban ecology. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 179-88	10.9	252
364	Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. <i>Austral Ecology</i> , 2000 , 25, 36-47	1.5	249
363	Fauna conservation in Australian plantation forests 🗈 review. <i>Biological Conservation</i> , 2004 , 119, 151-16	5% .2	241
362	Resilience in ecology: Abstraction, distraction, or where the action is?. <i>Biological Conservation</i> , 2014 , 177, 43-51	6.2	240
361	Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. <i>Australian Journal of Botany</i> , 2003 , 51, 471	1.2	239
360	The role of corridors in conservation: Solution or bandwagon?. <i>Trends in Ecology and Evolution</i> , 1992 , 7, 389-92	10.9	236
359	The changing role of history in restoration ecology. <i>Frontiers in Ecology and the Environment</i> , 2014 , 12, 499-506	5.5	224

358	Setting Effective and Realistic Restoration Goals: Key Directions for Research. <i>Restoration Ecology</i> , 2007 , 15, 354-357	3.1	220
357	Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. <i>Oecologia</i> , 1985 , 67, 342-351	2.9	211
356	Restoration Ecology: Interventionist Approaches for Restoring and Maintaining Ecosystem Function in the Face of Rapid Environmental Change. <i>Annual Review of Environment and Resources</i> , 2008 , 33, 39-61	17.2	210
355	Habitat Restoration D o We Know What Welle Doing?. <i>Restoration Ecology</i> , 2007 , 15, 382-390	3.1	204
354	Newly discovered landscape traps produce regime shifts in wet forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 15887-91	11.5	198
353	Deliberate Introductions of Species: Research Needs. <i>BioScience</i> , 1999 , 49, 619-630	5.7	189
352	Resilience, Adaptive Capacity, and the "Lock-in Trap" of the Western Australian Agricultural Region. <i>Ecology and Society</i> , 2004 , 9,	4.1	188
351	Temperate Eucalypt Woodlands: a Review of Their Status, Processes Threatening Their Persistence and Techniques for Restoration. <i>Australian Journal of Botany</i> , 1997 , 45, 949	1.2	182
350	Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. <i>Austral Ecology</i> , 1988 , 13, 171-179	1.5	173
349	Effects of Rainfall Variability and Gopher Disturbance on Serpentine Annual Grassland Dynamics. <i>Ecology</i> , 1991 , 72, 59-68	4.6	160
348	Synergisms among Habitat Fragmentation, Livestock Grazing, and Biotic Invasions in Southwestern Australia. <i>Conservation Biology</i> , 2001 , 15, 1522-1528	6	159
347	Future landscapes and the future of landscape ecology. <i>Landscape and Urban Planning</i> , 1997 , 37, 1-9	7.7	151
346	Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. <i>Biological Conservation</i> , 1993 , 64, 193-201	6.2	151
345	Ecological restoration for future sustainability in a changing environment. <i>Ecoscience</i> , 2008 , 15, 53-64	1.1	146
344	Improved probability of detection of ecological "surprises". <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 21957-62	11.5	145
343	Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. <i>Ecology</i> , 2013 , 94, 1687-96	4.6	139
342	Identifying Linkages among Conceptual Models of Ecosystem Degradation and Restoration: Towards an Integrative Framework. <i>Restoration Ecology</i> , 2006 , 14, 369-378	3.1	138
341	Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. <i>Journal of Applied Ecology</i> , 2007 , 44, 435-445	5.8	137

(2010-2005)

340	Integrating a global agro-climatic classification with bioregional boundaries in Australia. <i>Global Ecology and Biogeography</i> , 2005 , 14, 197-212	6.1	121
339	Community changes following shrub invasion of grassland. <i>Oecologia</i> , 1986 , 70, 508-513	2.9	120
338	Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. <i>BioScience</i> , 2016 , 66, 489	- 4 9 / 8	118
337	The impact of lower urinary tract symptoms and comorbidities on quality of life: the BACH and UREPIK studies. <i>BJU International</i> , 2007 , 99, 347-54	5.6	116
336	Primed for Change: Developing Ecological Restoration for the 21st Century. <i>Restoration Ecology</i> , 2013 , 21, 297-304	3.1	115
335	Biotic mechanisms of community stability shift along a precipitation gradient. <i>Ecology</i> , 2014 , 95, 1693-7	ор 6	112
334	Conservation opportunities across the world's anthromes. <i>Diversity and Distributions</i> , 2014 , 20, 745-755	5	112
333	Some practical suggestions for improving engagement between researchers and policy-makers in natural resource management. <i>Ecological Management and Restoration</i> , 2008 , 9, 182-186	1.4	111
332	Spatial and temporal variability in California annual grassland: results from a long-term study. Journal of Vegetation Science, 1995 , 6, 43-56	3.1	107
331	Specific leaf area responses to environmental gradients through space and time. <i>Ecology</i> , 2014 , 95, 399	-4.160	105
330	Implications of Current Ecological Thinking for Biodiversity Conservation: a Review of the Salient Issues. <i>Ecology and Society</i> , 2005 , 10,	4.1	105
329	LONG-TERM DATA REVEAL COMPLEX DYNAMICS IN GRASSLAND IN RELATION TO CLIMATE AND DISTURBANCE. <i>Ecological Monographs</i> , 2007 , 77, 545-568	9	101
328	Benefits of tree mixes in carbon plantings. <i>Nature Climate Change</i> , 2013 , 3, 869-874	21.4	100
327	Improving biodiversity monitoring. Austral Ecology, 2012 , 37, 285-294	1.5	100
326	Improving city life: options for ecological restoration in urban landscapes and how these might influence interactions between people and nature. <i>Landscape Ecology</i> , 2013 , 28, 1213-1221	4.3	97
325	Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. <i>Conservation Letters</i> , 2008 , 1, 129-135	6.9	96
324	Broadening the Extinction Debate: Population Deletions and Additions in California and Western Australia. <i>Conservation Biology</i> , 1998 , 12, 271-283	6	96
323	Guiding concepts for park and wilderness stewardship in an era of global environmental change. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 483-490	5.5	93

322	Cultural ecosystem services: Characteristics, challenges and lessons for urban green space research. <i>Ecosystem Services</i> , 2017 , 25, 179-194	6.1	92
321	Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: Impacts and possible management responses. <i>Austral Ecology</i> , 2002 , 27, 546-564	1.5	92
320	Integrating plant- and animal-based perspectives for more effective restoration of biodiversity. <i>Frontiers in Ecology and the Environment</i> , 2016 , 14, 37-45	5.5	88
319	Integrating Conservation and Restoration in a Changing World. <i>BioScience</i> , 2015 , 65, 302-312	5.7	86
318	Influence of fire and soil nutrients on native and non-native annuals at remnant vegetation edges in the Western Australian wheatbelt. <i>Journal of Vegetation Science</i> , 1992 , 3, 101-108	3.1	84
317	Woodland Restoration in the Western Australian Wheatbelt: A Conceptual Framework Using a State and Transition Model. <i>Restoration Ecology</i> , 1997 , 5, 28-35	3.1	83
316	The Kellerberrin project on fragmented landscapes: A review of current information. <i>Biological Conservation</i> , 1993 , 64, 185-192	6.2	82
315	Avoiding bio-perversity from carbon sequestration solutions. <i>Conservation Letters</i> , 2012 , 5, 28-36	6.9	79
314	Opportunities and Challenges for Ecological Restoration within REDD+. <i>Restoration Ecology</i> , 2011 , 19, 683-689	3.1	78
313	Effects of fertiliser addition and subsequent gopher disturbance on a serpentine annual grassland community. <i>Oecologia</i> , 1988 , 75, 291-295	2.9	78
312	Harvester ant foraging and plant species distribution in annual grassland. <i>Oecologia</i> , 1985 , 67, 519-523	2.9	78
311	Vegetation, Fire and Herbivore Interactions in Heathland. <i>Advances in Ecological Research</i> , 1987 , 16, 87-	147.8	70
310	Synthesis: Is Alcoa Successfully Restoring a Jarrah Forest Ecosystem after Bauxite Mining in Western Australia?. <i>Restoration Ecology</i> , 2007 , 15, S137-S144	3.1	66
309	Finding a middle-ground: The native/non-native debate. <i>Biological Conservation</i> , 2013 , 158, 55-62	6.2	64
308	Diversity in current ecological thinking: implications for environmental management. <i>Environmental Management</i> , 2009 , 43, 17-27	3.1	63
307	Landscape-scale disturbances and regeneration in semi-arid woodlands of southwestern Australia. <i>Pacific Conservation Biology</i> , 1994 , 1, 214	1.2	63
306	Interactions between annuals and woody perennials in a Western Australian nature reserve. <i>Journal of Vegetation Science</i> , 1991 , 2, 643-654	3.1	63
305	Can revegetation assist in the conservation of biodiversity in agricultural areas?. <i>Pacific Conservation Biology</i> , 1994 , 1, 29	1.2	62

304	Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. <i>Ecology</i> , 2014 , 95, 2466-2478	4.6	61
303	Fragmentation, Disturbance, and Plant Distribution: Mistletoes in Woodland Remnants in the Western Australian Wheatbelt. <i>Conservation Biology</i> , 1995 , 9, 426-438	6	60
302	Studies on Fire in Scottish Heathland Communities II. Post-Fire Vegetation Development. <i>Journal of Ecology</i> , 1984 , 72, 585	6	59
301	Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. <i>Ecological Processes</i> , 2013 , 2,	3.6	58
300	Gophers and grassland: a model of vegetation response to patchy soil disturbance. <i>Plant Ecology</i> , 1987 , 69, 141-146		58
299	The Precision Problem in Conservation and Restoration. <i>Trends in Ecology and Evolution</i> , 2016 , 31, 820-8	8 30 .9	57
298	Degraded or just different? Perceptions and value judgements in restoration decisions. <i>Restoration Ecology</i> , 2016 , 24, 153-158	3.1	57
297	Integrated landscape ecology: A Western Australian perspective. <i>Biological Conservation</i> , 1993 , 64, 231-	-263.8	56
296	Legacy of Land-Use Evident in Soils of Western Australia Wheatbelt. <i>Plant and Soil</i> , 2006 , 280, 189-207	4.2	55
295	Seed Dynamics in Calluna-Arctostaphylos Heath in North-Eastern Scotland. <i>Journal of Ecology</i> , 1984 , 72, 855	6	55
294	Are offsets effective? An evaluation of recent environmental offsets in Western Australia. <i>Biological Conservation</i> , 2017 , 206, 249-257	6.2	53
293	Triage: How do we prioritize health care for landscapes?. <i>Ecological Management and Restoration</i> , 2003 , 4, S39-S45	1.4	53
292	Restoration Ecology: The Challenge of Social Values and Expectations. <i>Frontiers in Ecology and the Environment</i> , 2004 , 2, 43	5.5	53
291	Establishment of Perennial Shrub and Tree Species in Degraded Eucalyptus salmonophloia (Salmon Gum) Remnant Woodlands: Effects of Restoration Treatments. <i>Restoration Ecology</i> , 2000 , 8, 135-143	3.1	53
290	Studies on Fire in Scottish Heathland Communities: I. Fire Characteristics. <i>Journal of Ecology</i> , 1984 , 72, 223	6	53
289	Scale and scaling: a cross-disciplinary perspective115-142		52
288	Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. <i>Population Ecology</i> , 2009 , 51, 237-243	2.1	51
287	Control of shrub establishment by springtime soil water availability in an annual grassland. <i>Oecologia</i> , 1989 , 81, 62-66	2.9	51

286	Invasion of an annual grassland in Northern California by Baccharis pilularis ssp. consanguinea. <i>Oecologia</i> , 1987 , 72, 461-465	2.9	50	
285	The Ridgefield Multiple Ecosystem Services Experiment: Can restoration of former agricultural land achieve multiple outcomes?. <i>Agriculture, Ecosystems and Environment</i> , 2012 , 163, 14-27	5.7	47	
284	Under the radar: mitigating enigmatic ecological impacts. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 635	5- 46 .9	46	
283	Landscape heterogeneity indices: problems of scale and applicability, with particular reference to animal habitat description. <i>Pacific Conservation Biology</i> , 1994 , 1, 183	1.2	46	
282	Novel ecosystems: concept or inconvenient reality? A response to Murcia et al. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 645-6	10.9	45	
281	Land-use legacy and the persistence of invasive Avena barbata on abandoned farmland. <i>Journal of Applied Ecology</i> , 2008 , 45, 1576-1583	5.8	45	
280	Categorizing Australian landscapes as an aid to assessing the generality of landscape management guidelines. <i>Global Ecology and Biogeography</i> , 2005 , 14, 1-15	6.1	44	
279	An ecological genetic delineation of local seed-source provenance for ecological restoration. <i>Ecology and Evolution</i> , 2013 , 3, 2138-49	2.8	42	
278	Looking for the Silver Lining: Making the Most of Failure. Restoration Ecology, 2009, 17, 1-3	3.1	42	
277	Using Landsat observations (1988\(\mathbb{D}\)017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. <i>Remote Sensing of Environment</i> , 2019 , 232, 111317	13.2	41	
276	Grieving for the Past and Hoping for the Future: Balancing Polarizing Perspectives in Conservation and Restoration. <i>Restoration Ecology</i> , 2013 , 21, 145-148	3.1	41	
275	Woodland restoration in Scotland: ecology, history, culture, economics, politics and change. <i>Journal of Environmental Management</i> , 2009 , 90, 2857-65	7.9	41	
274	Vegetation change: a reunifying concept in plant ecology. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2005 , 7, 69-76	3	41	
273	Markov models in the study of post-fire succession in heathland communities. <i>Plant Ecology</i> , 1984 , 56, 17-30		41	
272	Living with Invasive Plants in the Anthropocene: The Importance of Understanding Practice and Experience. <i>Conservation and Society</i> , 2015 , 13, 311	1.8	40	
271	Defining Novel Ecosystems 2013 , 58-60		39	
270	Achievable future conditions as a framework for guiding forest conservation and management. <i>Forest Ecology and Management</i> , 2016 , 360, 80-96	3.9	38	
269	Flower and Fruit Availability along a Forest Restoration Gradient. <i>Biotropica</i> , 2014 , 46, 114-123	2.3	38	

(2002-2011)

268	The role of botanic gardens in the science and practice of ecological restoration. <i>Conservation Biology</i> , 2011 , 25, 265-75	6	38	
267	Biomass accumulation and resource utilization in co-occurring grassland annuals. <i>Oecologia</i> , 1986 , 70, 555-558	2.9	38	
266	What happens if we cannot fix it? Triage, palliative care and setting priorities in salinising landscapes. <i>Australian Journal of Botany</i> , 2003 , 51, 647	1.2	37	
265	Movers and Stayers: Novel Assemblages in Changing Environments. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 116-128	10.9	37	
264	On principles and standards in ecological restoration. <i>Restoration Ecology</i> , 2018 , 26, 399-403	3.1	36	
263	The Use of [Thermocolor' Pyrometers in the Study of Heath Fire Behaviour. <i>Journal of Ecology</i> , 1984 , 72, 241	6	36	
262	Climate moderates release from nutrient limitation in natural annual plant communities. <i>Global Ecology and Biogeography</i> , 2015 , 24, 549-561	6.1	35	
261	Origins of the Novel Ecosystems Concept 2013 , 45-57		35	
260	Landscape ecology and conservation: moving from description to application. <i>Pacific Conservation Biology</i> , 1994 , 1, 170	1.2	35	
259	Studies on Fire in Scottish Heathland Communities: III. Vital Attributes of the Species. <i>Journal of Ecology</i> , 1984 , 72, 963	6	35	
258	Development of a natural practice to adapt conservation goals to global change. <i>Conservation Biology</i> , 2014 , 28, 696-704	6	34	
257	Seed mass and summer drought survival in a Mediterranean-climate ecosystem. <i>Plant Ecology</i> , 2011 , 212, 1479-1489	1.7	34	
256	Markov models and initial floristic composition in heathland vegetation dynamics. <i>Plant Ecology</i> , 1984 , 56, 31-43		34	
255	Contemplating the future: Acting now on long-term monitoring to answer 2050's questions. <i>Austral Ecology</i> , 2015 , 40, 213-224	1.5	33	
254	Dynamics of vegetation mosaics: Can we predict responses to global change?. <i>Ecoscience</i> , 1994 , 1, 346-	3 5 6.	33	
253	Engaging with novel ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 423-423	5.5	32	
252	Integrating Restoration and Succession 2007 , 168-179		32	
251	Vegetation of Phytophthora cinnamomi-infested and adjoining uninfested sites in the northern jarrah (Eucalyptus marginata) forest of Western Australia. <i>Australian Journal of Botany</i> , 2002 , 50, 277	1.2	32	

250	Identifying management options for modified vegetation: Application of the novel ecosystems framework to a case study in the Galapagos Islands. <i>Biological Conservation</i> , 2014 , 172, 37-48	6.2	31
249	Length of burning rotation and community composition in high-level Calluna-Eriophorum bog in N England. <i>Plant Ecology</i> , 1984 , 57, 129-136		31
248	Spatial variability of experimental fires in south-west Western Australia. <i>Austral Ecology</i> , 1988 , 13, 295	-2 9 . 9	30
247	Mediterranean-Type Ecosystems: Opportunities and Constraints for Studying the Function of Biodiversity. <i>Ecological Studies</i> , 1995 , 1-42	1.1	30
246	Identifying unidirectional and dynamic habitat filters to faunal recolonisation in restored mine-pits. <i>Journal of Applied Ecology</i> , 2012 , 49, 919-928	5.8	29
245	Towards a Conceptual Framework for Novel Ecosystems 2013 , 16-28		29
244	Community dynamics in relation to management of heathland vegetation in Scotland. <i>Plant Ecology</i> , 1981 , 46-47, 149-155		29
243	Managing tree plantations as novel socioecological systems: Australian and North American perspectives. <i>Canadian Journal of Forest Research</i> , 2015 , 45, 1427-1433	1.9	28
242	Restoration Challenges and Opportunities for Increasing Landscape Connectivity under the New Brazilian Forest Act. <i>Natureza A Conservacao</i> , 2013 , 11, 181-185		28
241	Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. <i>Austral Ecology</i> , 2006 , 31, 164-175	1.5	27
240	Artificial modifications of the coast in response to the Deepwater Horizon oil spill: quick solutions or long-term liabilities?. <i>Frontiers in Ecology and the Environment</i> , 2012 , 10, 44-49	5.5	26
239	The Working for Water programme in South Africa: the science behind the success. <i>Diversity and Distributions</i> , 2004 , 10, 501-503	5	26
238	Restoration over time: is it possible to restore trees and non-trees in high-diversity forests?. <i>Applied Vegetation Science</i> , 2016 , 19, 655-666	3.3	26
237	Mediterranean-Climate Ecosystems. <i>Ecological Studies</i> , 2001 , 157-199	1.1	26
236	Grappling with the social dimensions of novel ecosystems. <i>Frontiers in Ecology and the Environment</i> , 2018 , 16, 109-117	5.5	25
235	Interdisciplinary historical vegetation mapping for ecological restoration in Galapagos. <i>Landscape Ecology</i> , 2013 , 28, 519-532	4.3	25
234	Long-term data suggest jarrah-forest establishment at restored mine sites is resistant to climate variability. <i>Journal of Ecology</i> , 2015 , 103, 78-89	6	25
233	Seedling emergence and summer survival after direct seeding for woodland restoration on old fields in south-western Australia. <i>Ecological Management and Restoration</i> , 2014 , 15, 140-146	1.4	25

232	Remote Sensing of Spatial and Temporal Dynamics of Vegetation. <i>Ecological Studies</i> , 1990 , 203-219	1.1	25	
231	Classification of vegetation in the Western Australian wheatbelt using Landsat MSS data. <i>Plant Ecology</i> , 1989 , 80, 91-105		24	
230	Time since fire influences food resources for an endangered species, Carnaby⊠ cockatoo, in a fire-prone landscape. <i>Biological Conservation</i> , 2014 , 175, 1-9	6.2	23	
229	Sample Size Effects on Estimates of Population Genetic Structure: Implications for Ecological Restoration. <i>Restoration Ecology</i> , 2009 , 17, 837-844	3.1	23	
228	Ecological restoration in the slipstream of agricultural policy in the old and new world. <i>Agriculture, Ecosystems and Environment</i> , 2004 , 103, 601-611	5.7	23	
227	Distribution of Phytophthora cinnamomi in the northern jarrah (Eucalyptus marginata) forest of Western Australia in relation to dieback age and topography. <i>Australian Journal of Botany</i> , 2002 , 50, 10)7 ^{1.2}	23	
226	The Extent of Novel Ecosystems: Long in Time and Broad in Space 2013 , 66-80		22	
225	Do Thinning and Burning Sites Revegetated after Bauxite Mining Improve Habitat for Terrestrial Vertebrates?. <i>Restoration Ecology</i> , 2009 , 18, 300-310	3.1	22	
224	Landscape ecology: the state-of-the-science271-287		22	
223	Moving from descriptive to predictive ecology. <i>Agroforestry Systems</i> , 1999 , 45, 43-55	2	22	
222	Restoration as a Process of Assembly and Succession Mediated by Disturbance 2007 , 150-167		22	
221	Flexible and Adaptable Restoration: An Example from South Korea. <i>Restoration Ecology</i> , 2014 , 22, 271-	2781	21	
220	Interactive effects of altered rainfall and simulated nitrogen deposition on seedling establishment in a global biodiversity hotspot. <i>Oikos</i> , 2012 , 121, 2014-2025	4	21	
219	Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini, Malaysia. <i>Biological Invasions</i> , 2012 , 14, 1029-	-1 3 44	21	
218	The need for pluralism in landscape models: a reply to Dunn and Majer. Oikos, 2007, 116, 1419-1421	4	21	
217	Changes in Biota 1993 , 65-106		21	
216	Science and Policy in Natural Resource Management: Understanding System Complexity 2006,		21	
215	Offshore Oil and Gas Platforms as Novel Ecosystems: A Global Perspective. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	21	

214	Defining plant functional groups to guide rare plant management. Plant Ecology, 2009, 204, 207-216	1.7	20
213	Building Ecological Resilience in Highly Modified Landscapes. <i>BioScience</i> , 2019 , 69, 80-92	5.7	19
212	Landscape pattern analysis: key issues and challenges39-61		19
211	Long-term impact of prescribed burning on the nutrient status and fuel loads of rehabilitated bauxite mines in Western Australia. <i>Forest Ecology and Management</i> , 2004 , 190, 227-239	3.9	19
210	Assessing the ecological risk from secondary salinity: A framework addressing questions of scale and threshold responses. <i>Austral Ecology</i> , 2005 , 30, 537-545	1.5	19
209	A long-term experimental case study of the ecological effectiveness and cost effectiveness of invasive plant management in achieving conservation goals: bitou bush control in booderee national park in eastern australia. <i>PLoS ONE</i> , 2015 , 10, e0128482	3.7	18
208	Incorporating Novel Ecosystems into Management Frameworks 2013 , 157-171		18
207	Does habitat structure influence capture probabilities? A study of reptiles in a eucalypt forest. <i>Wildlife Research</i> , 2009 , 36, 509	1.8	18
206	The Future of Restoration Ecology: Challenges and Opportunities. <i>Restoration Ecology</i> , 2005 , 13, 239-24	13.1	18
205	Keep ecological restoration open and flexible. <i>Nature Ecology and Evolution</i> , 2018 , 2, 580	12.3	17
204	Landscapes, ecology and wildlife management in highly modified environments - an Australian perspective. <i>Wildlife Research</i> , 2005 , 32, 389	1.8	17
203	Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. <i>Forest Ecology and Management</i> , 2015 , 354, 10-17	3.9	16
202	Ecological connectivity or Barrier Fence? Critical choices on the agricultural margins of Western Australia. <i>Ecological Management and Restoration</i> , 2014 , 15, 180-190	1.4	16
201	High genetic diversity in a clonal relict Alexgeorgea nitens (Restionaceae): implications for ecological restoration. <i>Australian Journal of Botany</i> , 2010 , 58, 206	1.2	16
200	Natural ecosystems: Pattern and process in relation to local and landscape diversity in southwestern Australian woodlands. <i>Plant and Soil</i> , 2003 , 257, 371-378	4.2	16
199	Heavy Metal Concentrations in Plants Growing on a Copper Mine Spoil in the Grand Canyon, Arizona. <i>American Midland Naturalist</i> , 1986 , 115, 277	0.7	16
198	Navigating Novelty and Risk in Resilience Management. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 863-8	73 0.9	16
197	Bioturbation by bandicoots facilitates seedling growth by altering soil properties. <i>Functional Ecology</i> , 2018 , 32, 2138-2148	5.6	15

(1985-2017)

196	Isolation predicts compositional change after discrete disturbances in a global meta-study. <i>Ecography</i> , 2017 , 40, 1256-1266	6.5	15	
195	Where to from here? Challenges for restoration and revegetation in a fast-changing world. <i>Rangeland Journal</i> , 2017 , 39, 563	1.5	15	
194	Managing plant populations in fragmented landscapes: restoration or gardening?. <i>Australian Journal of Botany</i> , 2007 , 55, 371	1.2	15	
193	Non-target impacts of weed control on birds, mammals, and reptiles. <i>Ecosphere</i> , 2017 , 8, e01804	3.1	14	
192	Expanding the Portfolio: Conserving Nature's Masterpieces in a Changing World. <i>BioScience</i> , 2017 , 67, 568-575	5.7	14	
191	Does coarse woody debris density and volume influence the terrestrial vertebrate community in restored bauxite mines?. <i>Forest Ecology and Management</i> , 2014 , 318, 142-150	3.9	14	
190	The differential influences of human-induced disturbances on tree regeneration community: a landscape approach. <i>Ecosphere</i> , 2014 , 5, art90	3.1	14	
189	Plant Invasions as Builders and Shapers of Novel Ecosystems 2013 , 102-113		14	
188	Woody shrubs and herbivory influence tree encroachment in the sandplain heathlands of southwestern Australia. <i>Journal of Applied Ecology</i> , 2010 , 47, 441-450	5.8	14	
187	An overview of the ecology, management and conservation of Australial temperate woodlands. <i>Ecological Management and Restoration</i> , 2010 , 11, 201-209	1.4	14	
186	Should we ditch impact factors?. BMJ, The, 2007, 334, 569	5.9	14	
185	Ecology of the western bearded dragon (Pogona minor) in unmined forest and forest restored after bauxite mining in south-west Western Australia. <i>Australian Journal of Zoology</i> , 2007 , 55, 107	0.5	14	
184	The relative influence of in situ and neighborhood factors on reptile recolonization in post-mining restoration sites. <i>Restoration Ecology</i> , 2016 , 24, 517-527	3.1	14	
183	Modeling disturbance-based native invasive species control and its implications for management 2013 , 23, 1331-44		13	
182	Microsite and litter cover effects on seed banks vary with seed size and dispersal mechanisms: implications for revegetation of degraded saline land. <i>Plant Ecology</i> , 2012 , 213, 1145-1155	1.7	13	
181	Case Study: Management of Novel Ecosystems in the Seychelles 2013 , 228-238		13	
180	Perspective: Is Everything a Novel Ecosystem? If so, do we need the Concept? 2013 , 345-349		13	
179	VEGETATIVE REGROWTH FOLLOWING CUTTING IN THE SHRUB BACCHARIS PILULARIS SSP. CONSANGUINEA (DC) C. B. WOLF 1985 , 72, 514		13	

178	Restoration Ecology's silver jubilee: innovation, debate, and creating a future for restoration ecology. <i>Restoration Ecology</i> , 2018 , 26, 801-805	3.1	12
177	The influence of local elevation on soil properties and tree health in remnant eucalypt woodlands affected by secondary salinity. <i>Plant and Soil</i> , 2004 , 265, 175-188	4.2	12
176	The ecological context: a landscape perspective 2002 , 24-46		12
175	Contribution of the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. <i>Ecological Research</i> , 1994 , 9, 351-356	1.9	12
174	Function of Biodiversity in the Mediterranean-Type Ecosystems of Southwestern Australia. <i>Ecological Studies</i> , 1995 , 233-284	1.1	12
173	How many mature microhabitats does a slow-recolonising reptile require? Implications for restoration of bauxite minesites in south-western Australia. <i>Australian Journal of Zoology</i> , 2011 , 59, 9	0.5	12
172	Conservation opportunities on uncontested lands. <i>Nature Sustainability</i> , 2020 , 3, 9-15	22.1	12
171	Effectiveness of biodiversity offsets: An assessment of a controversial offset in Perth, Western Australia. <i>Biological Conservation</i> , 2018 , 228, 291-300	6.2	12
170	Soil-vegetation type, stem density and species richness influence biomass of restored woodland in south-western Australia. <i>Forest Ecology and Management</i> , 2015 , 344, 53-62	3.9	11
169	Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. <i>Journal of Vegetation Science</i> , 2018 , 29, 285-296	3.1	11
168	Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. <i>Soil Biology and Biochemistry</i> , 2016 , 93, 119-130	7.5	11
167	Overstorey and juvenile response to thinning and drought in a jarrah (Eucalyptus marginata Donn ex Sm.) forest of southwestern Australia. <i>Plant and Soil</i> , 2013 , 365, 291-305	4.2	11
166	Edge effects across boundaries between natural and restored jarrah (Eucalyptus marginata) forests in south-western Australia. <i>Austral Ecology</i> , 2015 , 40, 186-197	1.5	11
165	Microhabitat Preference of Egernia napoleonis in Undisturbed Jarrah Forest, and Availability and Introduction of Microhabitats to Encourage Colonization of Restored Forest. <i>Restoration Ecology</i> , 2013 , 21, 722-728	3.1	11
164	Restoration of OCBILs in south-western Australia: Response to Hopper. <i>Plant and Soil</i> , 2010 , 330, 15-18	4.2	11
163	Resilience at the individual plant level. <i>Tasks for Vegetation Science</i> , 1986 , 65-82	0.9	11
162	The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty. <i>Journal of Mammalogy</i> , 2019 , 100, 410-422	1.8	10
161	Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. <i>Ecology</i> , 2017 , 98, 500-511	4.6	10

Islands: Where Novelty is the Norm 2013, 29-44 160 10 Engaging the Public in Novel Ecosystems 2013, 247-256 159 10 Incorporating Geological Effects in Modeling of Revegetation Strategies for Salt-Affected 158 3.1 10 Landscapes. Environmental Management, 1999, 24, 99-109 Harvesting rate of the termite, Drepanotermes tamminensis (Hill) within native woodland and 1.9 10 157 shrubland of the Western Australian wheatbelt. Ecological Research, 1993, 8, 269-275 Possible Chemical Interactions among Heathland Plants. Oikos, 1984, 43, 23 156 4 10 A study of pattern and process in coastal vegetation using principal components analysis. Plant 10 155 Ecology, **1981**, 44, 137-153 Exotic plant invasion and understorey species richness: a comparison of two types of eucalypt 154 1.2 10 woodland in agricultural Western Australia. Pacific Conservation Biology, 1998, 4, 21 Vehicle tracks are predator highways in intact landscapes. Biological Conservation, 2018, 228, 281-290 153 10 Novel Urban Ecosystems and Ecosystem Services 310-325 152 10 Habitat Networks and Biological Conservation 2002, 150-170 151 10 Home Range Size and Micro-habitat Density Requirements of Egernia napoleonis: Implications for 150 3.1 9 Restored Jarrah Forest of South Western Australia. Restoration Ecology, 2012, 20, 740-746 Valuing Novel Ecosystems 2013, 257-268 149 9 148 Integrative landscape research: facts and challenges246-268 9 The importance of grasstrees (Xanthorrhoea preissii) as habitat for mardo (Antechinus flavipes 1.8 147 9 leucogaster) during post-fire recovery. Wildlife Research, 2007, 34, 640 Distribution of understorey species in forest affected by Phytophthora cinnamomi in 146 1.2 9 south-western Western Australia. Australian Journal of Botany, 2005, 53, 813 Recovery of shrubland communities on abandoned farmland in southwestern Australia: soils, 145 1.2 9 plants, birds and arthropods. Pacific Conservation Biology, 1999, 5, 163 Bioturbation by a reintroduced digging mammal reduces fuel loads in an urban reserve. Ecological 144 4.9 9 Applications, 2020, 30, e02018 Translocations of digging mammals and their potential for ecosystem restoration: a review of goals 143 9 and monitoring programmes. Mammal Review, 2020, 50, 382-398

142	Linear infrastructure impacts on landscape hydrology. <i>Journal of Environmental Management</i> , 2018 , 206, 446-457	7.9	9
141	Concerns about Novel Ecosystems296-309		9
140	Integrating Economic and Ecological Considerations: A Theoretical Framework 1993, 209-244		9
139	Do state-and-transition models derived from vegetation succession also represent avian succession in restored mine pits?. <i>Ecological Applications</i> , 2015 , 25, 1790-806	4.9	8
138	A triage framework for managing novel, hybrid, and designed marine ecosystems. <i>Global Change Biology</i> , 2019 , 25, 3215-3223	11.4	8
137	Case Study: Geographic Distribution and Level of Novelty of Puerto Rican Forests 2013 , 81-87		8
136	Fauna and Novel Ecosystems 2013 , 127-141		8
135	Estimating nutrient budgets for prescribed thinning in a regrowth eucalyptus forest in south-west Australia. <i>Forestry</i> , 2012 , 85, 51-61	2.2	8
134	Spatial heterogeneity and ecosystem processes62-77		8
133	The influence of local elevation on the effects of secondary salinity in remnant eucalypt woodlands: Changes in understorey communities. <i>Plant and Soil</i> , 2004 , 265, 253-266	4.2	8
132	Novel resources: opportunities for and risks to species conservation. <i>Frontiers in Ecology and the Environment</i> , 2020 , 18, 558-566	5.5	8
131	Biodiversity change in heathland and its relationships with shifting local fire regimes and native species expansion. <i>Journal of Plant Ecology</i> , 2015 , 8, 17-29	1.7	7
130	Do novel ecosystems provide habitat value for wildlife? Revisiting the physiognomy vs. floristics debate. <i>Ecosphere</i> , 2018 , 9, e02172	3.1	7
129	Movement patterns by Egernia napoleonis following reintroduction into restored jarrah forest. <i>Wildlife Research</i> , 2011 , 38, 475	1.8	7
128	Broadening the Extinction Debate: Population Deletions and Additions in California and Western Australia. <i>Conservation Biology</i> , 2008 , 12, 271-283	6	7
127	Jarrah Forest Ecosystem Restoration: A Foreword. <i>Restoration Ecology</i> , 2007 , 15, S1-S2	3.1	7
126	Restoration Ecology: Are We Making an Impact?. Restoration Ecology, 2007, 15, 597-600	3.1	7
125	Adequate data of known accuracy are critical to advancing the field of landscape ecology11-38		7

(2002-2001)

124	Additions to the host range of Phytophthora cinnamomi in the jarrah (Eucalyptus marginata) forest of Western Australia. <i>Australian Journal of Botany</i> , 2001 , 49, 193	1.2	7
123	Impacts of Land Use on Biodiversity in Southwestern Australia. <i>Ecological Studies</i> , 1998 , 81-106	1.1	7
122	Engineering restoration for the future. <i>Ecological Engineering</i> , 2021 , 159, 106103	3.9	7
121	Tradeoffs in demographic mechanisms underlie differences in species abundance and stability. <i>Nature Communications</i> , 2018 , 9, 5047	17.4	7
120	Clark Kent or Superman: Where Is the Phone Booth for Landscape Ecology? 1999 , 11-23		7
119	The evolution of Society for Ecological Restoration's principles and standardsflounter-response to Gann et al <i>Restoration Ecology</i> , 2018 , 26, 431-433	3.1	6
118	Evolving away from the linear model of research: a response to Courchamp et al. <i>Trends in Ecology and Evolution</i> , 2015 , 30, 368-70	10.9	6
117	Perspective: Ecological Novelty is not New 2013 , 61-65		6
116	Characterizing Novel Ecosystems: Challenges for Measurement 2013 , 192-204		6
115	Natural resource management at four social scales: psychological type matters. <i>Environmental Management</i> , 2010 , 45, 590-602	3.1	6
114	Overcoming barriers to effective public communication of ecology. <i>Frontiers in Ecology and the Environment</i> , 2006 , 4, 496-497	5.5	6
113	Major faults and the development of dryland salinity in the western wheatbelt of Western Australia. <i>Hydrology and Earth System Sciences</i> , 1998 , 2, 77-91	5.5	6
112	Influence of vegetation and soil types on the wheatbelt termite, Drepanotermes tamminensis (Hill), in the Western Australian wheatbelt. <i>Ecological Research</i> , 1994 , 9, 151-158	1.9	6
111	The wheatbelt of Western Australia. <i>Pacific Conservation Biology</i> , 2003 , 9, 9	1.2	6
110	No safety netlin the face of climate change: The case of pastoralists in Kunene Region, Namibia. <i>PLoS ONE</i> , 2020 , 15, e0238982	3.7	6
109	Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. <i>Ecological Engineering</i> , 2021 , 165, 106222	3.9	6
108	A threatened ecological community: research advances and priorities for Banksia woodlands. <i>Australian Journal of Botany</i> , 2021 , 69, 53	1.2	6
107	Landscape and Regional Planning for Conservation: Issues and Practicalities 2002 , 360-380		6

106	Straw man or scaffolding? Building the foundations of urban ecology: a reply to McDonnell et al <i>Trends in Ecology and Evolution</i> , 2012 , 27, 256-257	10.9	5
105	Introduction: Why Novel Ecosystems? 2013 , 1-8		5
104	Novel Ecosystems and Climate Change 2013 , 88-101		5
103	Case Study: Novel Socio-Ecological Systems in the North: Potential Pathways Toward Ecological and Societal Resilience 2013 , 334-344		5
102	Enacting Landscape Design: From Specific Cases to General Principles22-34		5
101	Transferring ecological knowledge to landscape planning: a design method for robust corridors227-24	5	5
100	Applying landscape-ecological principles to regional conservation: the WildCountry Project in Australia	192-21	3 5
99	An integrated approach to landscape science and management 2002 , 412-430		5
98	Restoration ecology and the role of soil biodiversity 2005 , 319-342		5
97	Designing mimics from incomplete data sets: salmon gum woodland and heathland ecosystems in South West Australia. <i>Agroforestry Systems</i> , 1999 , 45, 365-394	2	5
96	What can agriculture learn from natural ecosystems?. <i>Agroforestry Systems</i> , 1999 , 45, 425-438	2	5
95	Fragmented landscapes in Western Australia: Introduction. <i>Biological Conservation</i> , 1993 , 64, 183-184	6.2	5
94	The Effects of Planting Technique on the Growth of Ammophila arenaria (L.) Link and Lymus arenarius (L.) Hochst. <i>Journal of Applied Ecology</i> , 1983 , 20, 659	5.8	5
93	Morphological and molecular variation in Conospermum triplinervium (Proteaceae), the tree smokebush: implications for bushland restoration. <i>Australian Journal of Botany</i> , 2008 , 56, 451	1.2	5
92	Climate change indirectly reduces breeding frequency of a mobile species through changes in food availability. <i>Ecosphere</i> , 2019 , 10, e02656	3.1	4
91	Current vegetation structure and composition of woody species in community-derived categories of land degradation in a semiarid rangeland in Kunene region, Namibia. <i>Land Degradation and Development</i> , 2020 , 31, 2996-3013	4.4	4
90	Lines in the sand: quantifying the cumulative development footprint in the world largest remaining temperate woodland. <i>Landscape Ecology</i> , 2017 , 32, 1969-1986	4.3	4
89	Environmental Management and Restoration in a Changing Climate 2012 , 23-29		4

88	Case Study: Ecosystem Transformations along the Colorado Front Range: Prairie Dog Interactions with Multiple Components of Global Environmental Change 2013 , 142-149		4
87	The Policy Context: Building Laws and Rules that Embrace Novelty 2013 , 272-283		4
86	Microsite and litter cover effects on soil conditions and seedling recruitment in a saline agricultural system. <i>Plant and Soil</i> , 2011 , 348, 397-409	4.2	4
85	IV.2 Landscape Pattern and Biodiversity 2009 , 431-437		4
84	Molecular markers detect multiple origins of Agonis flexuosa (Myrtaceae) plants used in urban bushland restoration. <i>Ecological Management and Restoration</i> , 2006 , 7, 234-235	1.4	4
83	Degrading Landscapes: Lessons from Palliative Care. <i>EcoHealth</i> , 2001 , 7, 203-213		4
82	Shoot regeneration after fire or freezing temperatures and its relation to plant life-form for some heathland species. <i>Plant Ecology</i> , 1984 , 55, 181-189		4
81	LEAF AND SHOOT DEMOGRAPHY IN BACCHARIS SHRUBS OF DIFFERENT AGES 1987 , 74, 1111		4
80	Computer modelling of the effect of revegetation strategies on salinity in the western wheatbelt of Western Australia 2 <i>Soil Research</i> , 1998 , 36, 131	1.8	4
79	A rocky heart in a spinifex sea: occurrence of an endangered marsupial predator is multiscale dependent in naturally fragmented landscapes. <i>Landscape Ecology</i> , 2021 , 36, 1359-1376	4.3	4
78	Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. <i>Journal of Applied Ecology</i> ,	5.8	4
77	Conserving reptiles within a multiple-use landscape: determining habitat affiliations of reptile communities in the northern jarrah forest of south-western Australia. <i>Australian Journal of Zoology</i> , 2017 , 65, 21	0.5	3
76	Thinking systemically about ecological interventions: what do system archetypes teach us?. <i>Restoration Ecology</i> , 2020 , 28, 1017-1025	3.1	3
75	Infectious Disease and Novel Ecosystems 2013 , 114-123		3
74	Ecosystem Stewardship as a Framework for Conservation in a Directionally Changing World 2013, 326-3	33	3
73	Invasion Ecology and Restoration Ecology: Parallel Evolution in Two Fields of Endeavour 2010 , 61-69		3
72	Comparison of colonisation by Phytophthora cinnamomi in detached stem tissue of Eucalyptus marginata in relation to site disease status. <i>Australasian Plant Pathology</i> , 2007 , 36, 498	1.4	3
71	Determining patternprocess relationships in heterogeneous landscapes92-114		3

70	Restoring Jarrah Forest after Bauxite Mining in Western Australia IThe Effect of Fertilizer on Floristic Diversity and Composition 2008 ,		3
69	Novel ecosystems 2017 ,		3
68	Micro-scale geography of synchrony in a serpentine plant community. <i>Journal of Ecology</i> , 2021 , 109, 7506	762	3
67	The Management Framework in Practice ICan't See the Wood for the Trees: The Changing Management of the Novel Miconialinchona Ecosystem in the Humid Highlands of Santa Cruz Island, Galapagos 2013 , 185-188		2
66	Plant Materials for Novel Ecosystems 2013 , 212-227		2
65	What do we know about, and what do we do about, Novel Ecosystems? 2013, 351-360		2
64	Edge Effects165-178		2
63	Perspectives and prospects of landscape ecology3-8		2
62	Restoration ecology and landscape ecology 2005 , 217-229		2
61	A model of litter harvesting by the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), with particular reference to nutrient dynamics. <i>Ecological Research</i> , 1996 , 11, 69-78	.9	2
60	LEAF AND SHOOT DEMOGRAPHY IN BACCHARIS SHRUBS OF DIFFERENT AGES. <i>American Journal of Botany</i> , 1987 , 74, 1111-1115	7	2
59	The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales <i>Ecology</i> , 2022 , e3650	6	2
58	Burrowing by translocated boodie () populations alters soils but has limited effects on vegetation. <i>Ecology and Evolution</i> , 2021 , 11, 2596-2615	8	2
57	Diverse outcomes of species interactions in an invaded annual plant community. <i>Journal of Plant Ecology</i> , 2016 , rtw102	.7	2
56	Beyond ecological modelling: ground-truthing connectivity conservation networks through a design charrette in Western Australia. <i>Landscape and Urban Planning</i> , 2019 , 191, 103122	·7	2
55	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrient-acquisition strategies. <i>Journal of Ecology</i> , 2021 , 109, 3892	5	2
54	Glomalin-Related Soil Protein Reflects the Heterogeneity of Substrate and Vegetation in the campo rupestre Ecosystem. <i>Journal of Soil Science and Plant Nutrition</i> , 2021 , 21, 733-743	.2	2
53	Conclusions. Can We Reintegrate Fragmented Landscapes? 1993 , 299-309		2

52	Temporal longevity of unidirectional and dynamic filters to faunal recolonization in post-mining forest restoration. <i>Austral Ecology</i> , 2018 , 43, 973-988	1.5	1
51	Conversations with Lesley Head about Hope and Grief in the Anthropocene: Reconceptualising Human-Nature Relations. <i>Geographical Research</i> , 2018 , 56, 325-335	1.6	1
50	Landscape Ecology 2012 , 45-58		1
49	Perspective: From Rivets to Rivers 2013, 153-156		1
48	The Management Framework in Practice [Making Decisions in AtlanticCanadian Meadows: Chasing the Elusive Reference State 2013 , 172-175		1
47	The Management Framework in Practice IPrairie Dogs at the Urban Interface: Conservation Solutions When Ecosystem Change Drivers are Beyond the Scope of Management Actions 2013 , 176-17	' 9	1
46	Case Study: Novelty Measurement in Pampean Grasslands 2013 , 205-211		1
45	Perspective: Coming of Age in a Trash Forest 2013 , 243-246		1
44	The Diverse Impacts of Grazing, Fire and Weeds: How Ecological Theory Can Inform Conservation Mana	geme	nt <u>1</u> 11-130
43	Emergent Properties of Land Mosaics: Implications for Land Management and Biodiversity Conservatio	ո199-	21:4
42	Corridors, Connectivity and Biological Conservation249-262		1
41	Tools for Conserving Managing Individual Plant Species in Dynamic Landscapes330-342		1
40	Landscape Models for Use in Studies of Landscape Change and Habitat Fragmentation35-48		1
39	Goals, Targets and Priorities for Landscape-Scale Restoration511-526		1
38	Advances in detecting landscape changes at multiple scales: examples from northern Australia161-172		1
37	Using landscape ecology to make sense of Australia's last frontier214-226		1
36	Disturbance, Diversity, and Invasion: Implications for Conservation 1992 , 164-180		1
35	Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. <i>Plant and Soil</i> , 2022 , 472, 577	4.2	1

34	Non-native plants and nitrogen addition have little effect on pollination and seed set in 3-year-old restored woodland. <i>Austral Ecology</i> , 2020 , 45, 1156	1.5	1
33	Rock removal associated with agricultural intensification will exacerbate the loss of reptile diversity. <i>Journal of Applied Ecology</i> , 2021 , 58, 1557	5.8	1
32	Gut passage time and viability of seeds consumed by Australian marsupials. <i>Australian Mammalogy</i> , 2021 , 43, 363	1.1	1
31	Ecosystem roles and conservation status of bioturbator mammals. <i>Mammal Review</i> ,	5	1
30	A global review of seed enhancement technology use to inform improved applications in restoration. <i>Science of the Total Environment</i> , 2021 , 798, 149096	10.2	1
29	Case Study: Shale Bings in Central Scotland: From Ugly Blots on the Landscape to Cultural and Biological Heritage286-289		1
28	Conservation Management in Fragmented Systems 1993 , 279-296		1
27	Case Study: Do Feedbacks from the Soil Biota Secure Novelty in Ecosystems? 2013 , 124-126		O
26	Identifying optimal solutions between competing economic and conservation land use objectives for species that require widely distributed resources. <i>Environmental Modelling and Software</i> , 2022 , 148, 105292	5.2	0
25	Rewilding and restoration 2019 , 123-141		
24	Case Study: Hole-in-the-Donut, Everglades 2013 , 9-15		
23	Perspective: Plus & Change, Plus C'est La Mine Chose 2013 , 150-151		
22	The Management Framework in Practice IHow Social Barriers Contribute to Novel Ecosystem Maintenance: Managing Reindeer Populations on St George Island, Pribilof Islands, Alaska 2013 , 180-1	84	
21	The Management Framework in Practice Designer Wetlands as Novel Ecosystems 2013 , 189-191		
20	Perspective: Moving to the Dark Side 2013 , 239-241		
19	Case Study: A Rocky Novel Ecosystem: Industrial Origins to Conservation Concern 2013 , 269-271		
18	Perspective: Lake Burley Griffin 2013 , 284-285		
17	Australia: better solutions to wildfires. <i>Nature</i> , 2012 , 482, 471	50.4	

LIST OF PUBLICATIONS

V.7 Restoration Ecology 2009, 566-572 16 The Whole Elephant: Classification and Terminology as Tools for Achieving Generality in Landscape Ecology7-21 15 Managing Landscapes for Vulnerable, Invasive and Disease Species311-329 14 Ecosystems, Ecosystem Processes and Global Change: Implications for Landscape Design347-364 13 Does Conservation Need Landscape Ecology? A Perspective from Both Sides of the Divide477-493 12 A Contribution to the Development of a Conceptual Framework for Landscape Management: A 11 Landscape State and Transition Model527-545 Remnant Geometry, Landscape Morphology, and Principles and Procedures for Landscape Design53-63 10 Habitat and Landscape Design: Concepts, Constraints and Opportunities81-95 9 Optimization of landscape pattern143-160 8 Biodiversity in Australia. Conservation Biology, 1996, 10, 1485-1486 6 Offshore platforms as novel ecosystems: A case study from Australia's Northwest Shelf.. *Ecology* 6 2.8 and Evolution, 2022, 12, e8496 Does the need to drink influence nest site selection in a wide-ranging threatened cockatoo?. Forest 3.9 *Ecology and Management*, **2022**, 505, 119928 Resource webs in Mediterranean-type climates. Tasks for Vegetation Science, 1994, 73-81 0.9 A Tale of Two Continents: The Growth and Maturation of Landscape Ecology in North America and Australia 2015, 143-161 Perspective: A Tale of Two Natures291-295 Gophers and grassland: a model of vegetation response to patchy soil disturbance 1987, 141-146