Richard Hobbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9118993/publications.pdf Version: 2024-02-01

RICHARD HORRS

#	Article	IF	CITATIONS
1	Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology, 1991, 5, 18-32.	2.4	3,023
2	Disturbance, Diversity, and Invasion: Implications for Conservation. Conservation Biology, 1992, 6, 324-337.	2.4	1,885
3	Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 2006, 15, 1-7.	2.7	1,528
4	Novel ecosystems: implications for conservation and restoration. Trends in Ecology and Evolution, 2009, 24, 599-605.	4.2	1,485
5	Effects of Invasive Alien Plants on Fire Regimes. BioScience, 2004, 54, 677.	2.2	1,193
6	Towards a Conceptual Framework for Restoration Ecology. Restoration Ecology, 1996, 4, 93-110.	1.4	1,009
7	Biotic Control over the Functioning of Ecosystems. Science, 1997, 277, 500-504.	6.0	948
8	Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology and Evolution, 2001, 16, 454-459.	4.2	929
9	Don't judge species on their origins. Nature, 2011, 474, 153-154.	13.7	781
10	Ecological Restoration and Global Climate Change. Restoration Ecology, 2006, 14, 170-176.	1.4	692
11	Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 2007, 13, 126-139.	1.9	685
12	What's new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology and Evolution, 2008, 23, 104-112.	4.2	668
13	Restoration Ecology: Repairing the Earth's Ecosystems in the New Millennium. Restoration Ecology, 2001, 9, 239-246.	1.4	655
14	Conservation Where People Live and Work. Conservation Biology, 2002, 16, 330-337.	2.4	635
15	Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landscape Ecology, 2002, 17, 355-365.	1.9	632
16	Threshold models in restoration and conservation: a developing framework. Trends in Ecology and Evolution, 2009, 24, 271-279.	4.2	535
17	A Framework for Conceptualizing Human Effects on Landscapes and Its Relevance to Management and Research Models. Conservation Biology, 1999, 13, 1282-1292.	2.4	521
18	A checklist for ecological management of landscapes for conservation. Ecology Letters, 2008, 11, 78-91.	3.0	518

#	Article	IF	CITATIONS
19	Ecological Restoration in the Light of Ecological History. Science, 2009, 325, 567-569.	6.0	492
20	An Integrated Approach to the Ecology and Management of Plant Invasions. Conservation Biology, 1995, 9, 761-770.	2.4	448
21	Management of novel ecosystems: are novel approaches required?. Frontiers in Ecology and the Environment, 2008, 6, 547-553.	1.9	432
22	Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biological Conservation, 2012, 155, 141-148.	1.9	394
23	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	1.9	378
24	Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere, 2015, 6, 1-25.	1.0	361
25	Spontaneous Succession versus Technical Reclamation in the Restoration of Disturbed Sites. Restoration Ecology, 2008, 16, 363-366.	1.4	341
26	Pine Invasions in the Southern Hemisphere: Determinants of Spread and Invadability. Journal of Biogeography, 1994, 21, 511.	1.4	328
27	Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177, 43-51.	1.9	325
28	Intervention Ecology: Applying Ecological Science in the Twenty-first Century. BioScience, 2011, 61, 442-450.	2.2	323
29	Hurdles and Opportunities for Landscape-Scale Restoration. Science, 2013, 339, 526-527.	6.0	319
30	Time for a change: dynamic urban ecology. Trends in Ecology and Evolution, 2012, 27, 179-188.	4.2	305
31	The changing role of history in restoration ecology. Frontiers in Ecology and the Environment, 2014, 12, 499-506.	1.9	299
32	Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecology, 2000, 25, 36-47.	0.7	293
33	Fauna conservation in Australian plantation forests – a review. Biological Conservation, 2004, 119, 151-168.	1.9	283
34	The role of corridors in conservation: Solution or bandwagon?. Trends in Ecology and Evolution, 1992, 7, 389-392.	4.2	274
35	Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. Australian Journal of Botany, 2003, 51, 471.	0.3	266
36	Setting Effective and Realistic Restoration Goals: Key Directions for Research. Restoration Ecology, 2007, 15, 354-357.	1.4	258

#	Article	IF	CITATIONS
37	Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia, 1985, 67, 342-351.	0.9	252
38	Restoration Ecology: Interventionist Approaches for Restoring and Maintaining Ecosystem Function in the Face of Rapid Environmental Change. Annual Review of Environment and Resources, 2008, 33, 39-61.	5.6	251
39	Habitat Restoration—Do We Know What We're Doing?. Restoration Ecology, 2007, 15, 382-390.	1.4	246
40	Resilience, Adaptive Capacity, and the "Lock-in Trap" of the Western Australian Agricultural Region. Ecology and Society, 2004, 9, .	1.0	241
41	Newly discovered landscape traps produce regime shifts in wet forests. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15887-15891.	3.3	236
42	Deliberate Introductions of Species: Research Needs. BioScience, 1999, 49, 619-630.	2.2	223
43	Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. Austral Ecology, 1988, 13, 171-179.	0.7	222
44	Effects of Rainfall Variability and Gopher Disturbance on Serpentine Annual Grassland Dynamics. Ecology, 1991, 72, 59-68.	1.5	217
45	Temperate Eucalypt Woodlands: a Review of Their Status, Processes Threatening Their Persistence and Techniques for Restoration. Australian Journal of Botany, 1997, 45, 949.	0.3	203
46	Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology, 2013, 94, 1687-1696.	1.5	191
47	Future landscapes and the future of landscape ecology. Landscape and Urban Planning, 1997, 37, 1-9.	3.4	186
48	Ecological restoration for future sustainability in a changing environment. Ecoscience, 2008, 15, 53-64.	0.6	180
49	Synergisms among Habitat Fragmentation, Livestock Grazing, and Biotic Invasions in Southwestern Australia. Conservation Biology, 2001, 15, 1522-1528.	2.4	175
50	Improved probability of detection of ecological "surprises― Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21957-21962.	3.3	175
51	Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. Biological Conservation, 1993, 64, 193-201.	1.9	171
52	Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. BioScience, 2016, 66, 489-498.	2.2	171
53	Identifying Linkages among Conceptual Models of Ecosystem Degradation and Restoration: Towards an Integrative Framework. Restoration Ecology, 2006, 14, 369-378.	1.4	164
54	Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 2014, 95, 1693-1700.	1.5	161

#	Article	IF	CITATIONS
55	Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. Journal of Applied Ecology, 2007, 44, 435-445.	1.9	159
56	Cultural ecosystem services: Characteristics, challenges and lessons for urban green space research. Ecosystem Services, 2017, 25, 179-194.	2.3	152
57	Specific leaf area responses to environmental gradients through space and time. Ecology, 2014, 95, 399-410.	1.5	149
58	Primed for Change: Developing Ecological Restoration for the 21st Century. Restoration Ecology, 2013, 21, 297-304.	1.4	147
59	Integrating a global agro-climatic classification with bioregional boundaries in Australia. Global Ecology and Biogeography, 2005, 14, 197-212.	2.7	146
60	Community changes following shrub invasion of grassland. Oecologia, 1986, 70, 508-513.	0.9	141
61	Benefits of tree mixes in carbon plantings. Nature Climate Change, 2013, 3, 869-874.	8.1	141
62	The impact of lower urinary tract symptoms and comorbidities on quality of life: the BACH and UREPIK studies. BJU International, 2007, 99, 347-354.	1.3	140
63	Implications of Current Ecological Thinking for Biodiversity Conservation: a Review of the Salient Issues. Ecology and Society, 2005, 10, .	1.0	137
64	Some practical suggestions for improving engagement between researchers and policyâ€makers in natural resource management. Ecological Management and Restoration, 2008, 9, 182-186.	0.7	134
65	Improving biodiversity monitoring. Austral Ecology, 2012, 37, 285-294.	0.7	130
66	Improving city life: options for ecological restoration in urban landscapes and how these might influence interactions between people and nature. Landscape Ecology, 2013, 28, 1213-1221.	1.9	129
67	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	1.9	126
68	Conservation opportunities across the world's anthromes. Diversity and Distributions, 2014, 20, 745-755.	1.9	120
69	LONG-TERM DATA REVEAL COMPLEX DYNAMICS IN GRASSLAND IN RELATION TO CLIMATE AND DISTURBANCE. Ecological Monographs, 2007, 77, 545-568.	2.4	119
70	Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. Conservation Letters, 2008, 1, 129-135.	2.8	116
71	Spatial and temporal variability in California annual grassland: results from a long-term study. Journal of Vegetation Science, 1995, 6, 43-56.	1.1	114
72	Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: Impacts and possible management responses. Austral Ecology, 2002, 27, 546-564.	0.7	112

#	Article	IF	CITATIONS
73	Integrating Conservation and Restoration in a Changing World. BioScience, 2015, 65, 302-312.	2.2	112
74	Guiding concepts for park and wilderness stewardship in an era of global environmental change. Frontiers in Ecology and the Environment, 2010, 8, 483-490.	1.9	110
75	Opportunities and Challenges for Ecological Restoration within REDD+. Restoration Ecology, 2011, 19, 683-689.	1.4	105
76	Avoiding bioâ€perversity from carbon sequestration solutions. Conservation Letters, 2012, 5, 28-36.	2.8	101
77	Broadening the Extinction Debate: Population Deletions and Additions in California and Western Australia. Conservation Biology, 1998, 12, 271-283.	2.4	101
78	Influence of fire and soil nutrients on native and non-native annuals at remnant vegetation edges in the Western Australian wheatbelt. Journal of Vegetation Science, 1992, 3, 101-108.	1.1	96
79	Woodland Restoration in the Western Australian Wheatbelt: A Conceptual Framework Using a State and Transition Model. Restoration Ecology, 1997, 5, 28-35.	1.4	93
80	Vegetation, Fire and Herbivore Interactions in Heathland. Advances in Ecological Research, 1987, 16, 87-173.	1.4	92
81	Harvester ant foraging and plant species distribution in annual grassland. Oecologia, 1985, 67, 519-523.	0.9	90
82	The Kellerberrin project on fragmented landscapes: A review of current information. Biological Conservation, 1993, 64, 185-192.	1.9	90
83	Effects of fertiliser addition and subsequent gopher disturbance on a serpentine annual grassland community. Oecologia, 1988, 75, 291-295.	0.9	87
84	Studies on Fire in Scottish Heathland Communities II. Post-Fire Vegetation Development. Journal of Ecology, 1984, 72, 585.	1.9	84
85	Seed Dynamics in Calluna-Arctostaphylos Heath in North-Eastern Scotland. Journal of Ecology, 1984, 72, 855.	1.9	83
86	The Precision Problem in Conservation and Restoration. Trends in Ecology and Evolution, 2016, 31, 820-830.	4.2	81
87	Studies on Fire in Scottish Heathland Communities: I. Fire Characteristics. Journal of Ecology, 1984, 72, 223.	1.9	80
88	Synthesis: Is Alcoa Successfully Restoring a Jarrah Forest Ecosystem after Bauxite Mining in Western Australia?. Restoration Ecology, 2007, 15, S137.	1.4	80
89	Finding a middle-ground: The native/non-native debate. Biological Conservation, 2013, 158, 55-62.	1.9	78
90	Landscape-scale disturbances and regeneration in semi-arid woodlands of southwestern Australia. Pacific Conservation Biology, 1994, 1, 214.	0.5	77

#	Article	IF	CITATIONS
91	Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. Ecology, 2014, 95, 2466-2478.	1.5	76
92	Diversity in Current Ecological Thinking: Implications for Environmental Management. Environmental Management, 2009, 43, 17-27.	1.2	74
93	Interactions between annuals and woody perennials in a Western Australian nature reserve. Journal of Vegetation Science, 1991, 2, 643-654.	1.1	73
94	Integrated landscape ecology: A Western Australian perspective. Biological Conservation, 1993, 64, 231-238.	1.9	73
95	Can revegetation assist in the conservation of biodiversity in agricultural areas?. Pacific Conservation Biology, 1994, 1, 29.	0.5	70
96	Fragmentation, Disturbance, and Plant Distribution: Mistletoes in Woodland Remnants in the Western Australian Wheatbelt. Conservation Biology, 1995, 9, 426-438.	2.4	70
97	Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. Ecological Processes, 2013, 2, .	1.6	70
98	Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. Remote Sensing of Environment, 2019, 232, 111317.	4.6	68
99	Degraded or just different? Perceptions and value judgements in restoration decisions. Restoration Ecology, 2016, 24, 153-158.	1.4	66
100	Triage: How do we prioritize health care for landscapes?. Ecological Management and Restoration, 2003, 4, S39-S45.	0.7	64
101	Scale and scaling: a cross-disciplinary perspective. , 2007, , 115-142.		63
102	Are offsets effective? An evaluation of recent environmental offsets in Western Australia. Biological Conservation, 2017, 206, 249-257.	1.9	63
103	Establishment of Perennial Shrub and Tree Species in Degraded Eucalyptus salmonophloia (Salmon) Tj ETQq1 1 (0.784314 1.4	rgBT /Overloc
104	Legacy of Land-Use Evident in Soils of Western Australia's Wheatbelt. Plant and Soil, 2006, 280, 189-207.	1.8	62
105	Invasion of an annual grassland in Northern California by Baccharis pilularis ssp. consanguinea. Oecologia, 1987, 72, 461-465.	0.9	61
106	Under the radar: mitigating enigmatic ecological impacts. Trends in Ecology and Evolution, 2014, 29, 635-644.	4.2	61
107	Control of shrub establishment by springtime soil water availability in an annual grassland. Oecologia, 1989, 81, 62-66.	0.9	59
108	Restoration Ecology: The Challenge of Social Values and Expectations. Frontiers in Ecology and the Environment, 2004, 2, 43.	1.9	59

#	Article	IF	CITATIONS
109	Herbivoryâ€induced extrafloral nectar increases native and invasive ant worker survival. Population Ecology, 2009, 51, 237-243.	0.7	59
110	Gophers and grassland: a model of vegetation response to patchy soil disturbance. Plant Ecology, 1987, 69, 141-146.	1.2	58
111	On principles and standards in ecological restoration. Restoration Ecology, 2018, 26, 399-403.	1.4	58
112	Landâ€use legacy and the persistence of invasive <i>Avena barbata</i> on abandoned farmland. Journal of Applied Ecology, 2008, 45, 1576-1583.	1.9	56
113	Offshore Oil and Gas Platforms as Novel Ecosystems: A Global Perspective. Frontiers in Marine Science, 2019, 6, .	1.2	56
114	Landscape heterogeneity indices: problems of scale and applicability, with particular reference to animal habitat description. Pacific Conservation Biology, 1994, 1, 183.	0.5	54
115	Categorizing Australian landscapes as an aid to assessing the generality of landscape management guidelines. Global Ecology and Biogeography, 2005, 14, 1-15.	2.7	53
116	The Ridgefield Multiple Ecosystem Services Experiment: Can restoration of former agricultural land achieve multiple outcomes?. Agriculture, Ecosystems and Environment, 2012, 163, 14-27.	2.5	52
117	Movers and Stayers: Novel Assemblages in Changing Environments. Trends in Ecology and Evolution, 2018, 33, 116-128.	4.2	52
118	Woodland restoration in Scotland: Ecology, history, culture, economics, politics and change. Journal of Environmental Management, 2009, 90, 2857-2865.	3.8	51
119	Novel ecosystems: concept or inconvenient reality? A response to Murcia et al Trends in Ecology and Evolution, 2014, 29, 645-646.	4.2	51
120	Living with Invasive Plants in the Anthropocene: The Importance of Understanding Practice and Experience. Conservation and Society, 2015, 13, 311.	0.4	51
121	The Use of `Thermocolor' Pyrometers in the Study of Heath Fire Behaviour. Journal of Ecology, 1984, 72, 241.	1.9	50
122	Vegetation change: a reunifying concept in plant ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 69-76.	1.1	50
123	Grieving for the Past and Hoping for the Future: Balancing Polarizing Perspectives in Conservation and Restoration. Restoration Ecology, 2013, 21, 145-148.	1.4	50
124	Flower and Fruit Availability along a Forest Restoration Gradient. Biotropica, 2014, 46, 114-123.	0.8	50
125	An ecological genetic delineation of local seedâ€source provenance for ecological restoration. Ecology and Evolution, 2013, 3, 2138-2149.	0.8	49
126	Achievable future conditions as a framework for guiding forest conservation and management. Forest Ecology and Management, 2016, 360, 80-96.	1.4	49

#	Article	IF	CITATIONS
127	Studies on Fire in Scottish Heathland Communities: III. Vital Attributes of the Species. Journal of Ecology, 1984, 72, 963.	1.9	48
128	The Role of Botanic Gardens in the Science and Practice of Ecological Restoration. Conservation Biology, 2011, 25, no-no.	2.4	48
129	Biomass accumulation and resource utilization in co-occurring grassland annuals. Oecologia, 1986, 70, 555-558.	0.9	47
130	Identifying unidirectional and dynamic habitat filters to faunal recolonisation in restored mineâ€pits. Journal of Applied Ecology, 2012, 49, 919-928.	1.9	47
131	Climate moderates release from nutrient limitation in natural annual plant communities. Global Ecology and Biogeography, 2015, 24, 549-561.	2.7	47
132	Contemplating the future: Acting now on longâ€ŧerm monitoring to answer 2050's questions. Austral Ecology, 2015, 40, 213-224.	0.7	47
133	Landscape ecology: the state-of-the-science. , 2007, , 271-287.		45
134	Looking for the Silver Lining: Making the Most of Failure. Restoration Ecology, 2009, 17, 1-3.	1.4	45
135	Mediterranean-Type Ecosystems: Opportunities and Constraints for Studying the Function of Biodiversity. Ecological Studies, 1995, , 1-42.	0.4	45
136	Markov models in the study of post-fire succession in heathland communities. Plant Ecology, 1984, 56, 17-30.	1.2	44
137	What happens if we cannot fix it? Triage, palliative care and setting priorities in salinising landscapes. Australian Journal of Botany, 2003, 51, 647.	0.3	44
138	Seed mass and summer drought survival in a Mediterranean-climate ecosystem. Plant Ecology, 2011, 212, 1479-1489.	0.7	44
139	Landscape ecology and conservation: moving from description to application. Pacific Conservation Biology, 1994, 1, 170.	0.5	42
140	Do Thinning and Burning Sites Revegetated after Bauxite Mining Improve Habitat for Terrestrial Vertebrates?. Restoration Ecology, 2009, 18, 300-310.	1.4	42
141	Development of a Natural Practice to Adapt Conservation Goals to Global Change. Conservation Biology, 2014, 28, 696-704.	2.4	42
142	Remote Sensing of Spatial and Temporal Dynamics of Vegetation. Ecological Studies, 1990, , 203-219.	0.4	42
143	Markov models and initial floristic composition in heathland vegetation dynamics. Plant Ecology, 1984, 56, 31-43.	1.2	41
144	Spatial variability of experimental fires in south-west Western Australia. Austral Ecology, 1988, 13, 295-299.	0.7	41

#	Article	IF	CITATIONS
145	Dynamics of vegetation mosaics: Can we predict responses to global change?. Ecoscience, 1994, 1, 346-356.	0.6	40
146	Continental cale Governance and the Hastening of Loss of Australia's Biodiversity. Conservation Biology, 2013, 27, 1133-1135.	2.4	39
147	Vegetation of Phytophthora cinnamomi-infested and adjoining uninfested sites in the northern jarrah (Eucalyptus marginata) forest of Western Australia. Australian Journal of Botany, 2002, 50, 277.	0.3	39
148	Integrating Restoration and Succession. , 2007, , 168-179.		38
149	Length of burning rotation and community composition in high-level Calluna-Eriophorum bog in N England. Plant Ecology, 1984, 57, 129-136.	1.2	36
150	Changes in Biota. , 1993, , 65-106.		36
151	Identifying management options for modified vegetation: Application of the novel ecosystems framework to a case study in the Galapagos Islands. Biological Conservation, 2014, 172, 37-48.	1.9	36
152	Grappling with the social dimensions of novel ecosystems. Frontiers in Ecology and the Environment, 2018, 16, 109-117.	1.9	36
153	Mediterranean-Climate Ecosystems. Ecological Studies, 2001, , 157-199.	0.4	36
154	Engaging with novel ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 423-423.	1.9	35
155	Managing tree plantations as novel socioecological systems: Australian and North American perspectives. Canadian Journal of Forest Research, 2015, 45, 1427-1433.	0.8	33
156	Restoration over time: is it possible to restore trees and nonâ€ŧrees in highâ€diversity forests?. Applied Vegetation Science, 2016, 19, 655-666.	0.9	33
157	A global review of seed enhancement technology use to inform improved applications in restoration. Science of the Total Environment, 2021, 798, 149096.	3.9	33
158	Community dynamics in relation to management of heathland vegetation in Scotland. Plant Ecology, 1981, 46-47, 149-155.	1.2	32
159	Building Ecological Resilience in Highly Modified Landscapes. BioScience, 2019, 69, 80-92.	2.2	32
160	Restoration Challenges and Opportunities for Increasing Landscape Connectivity under the New Brazilian Forest Act. Natureza A Conservacao, 2013, 11, 181-185.	2.5	32
161	Sample Size Effects on Estimates of Population Genetic Structure: Implications for Ecological Restoration. Restoration Ecology, 2009, 17, 837-844.	1.4	31
162	Seedling emergence and summer survival after direct seeding for woodland restoration on old fields in southâ€western <scp>A</scp> ustralia. Ecological Management and Restoration, 2014, 15, 140-146.	0.7	31

#	Article	IF	CITATIONS
163	Longâ€term data suggest jarrahâ€forest establishment at restored mine sites is resistant to climate variability. Journal of Ecology, 2015, 103, 78-89.	1.9	31
164	Artificial modifications of the coast in response to theDeepwater Horizonoil spill: quick solutions or long-term liabilities?. Frontiers in Ecology and the Environment, 2012, 10, 44-49.	1.9	30
165	Interdisciplinary historical vegetation mapping for ecological restoration in Galapagos. Landscape Ecology, 2013, 28, 519-532.	1.9	30
166	Should we ditch impact factors?. BMJ: British Medical Journal, 2007, 334, 569-569.	2.4	29
167	Navigating Novelty and Risk in Resilience Management. Trends in Ecology and Evolution, 2018, 33, 863-873.	4.2	29
168	The Working for Water programme in South Africa: the science behind the success. Diversity and Distributions, 2004, 10, 501-503.	1.9	28
169	Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. Austral Ecology, 2006, 31, 164-175.	0.7	28
170	Defining plant functional groups to guide rare plant management. Plant Ecology, 2009, 204, 207-216.	0.7	28
171	Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini, Malaysia. Biological Invasions, 2012, 14, 1029-1044.	1.2	28
172	Flexible and Adaptable Restoration: An Example from South Korea. Restoration Ecology, 2014, 22, 271-278.	1.4	28
173	Time since fire influences food resources for an endangered species, Carnaby's cockatoo, in a fire-prone landscape. Biological Conservation, 2014, 175, 1-9.	1.9	28
174	Bioturbation by bandicoots facilitates seedling growth by altering soil properties. Functional Ecology, 2018, 32, 2138-2148.	1.7	28
175	Classification of vegetation in the Western Australian wheatbelt using Landsat MSS data. Plant Ecology, 1989, 80, 91-105.	1.2	27
176	Moving from descriptive to predictive ecology. Agroforestry Systems, 1999, 45, 43-55.	0.9	27
177	Distribution of Phytophthora cinnamomi in the northern jarrah (Eucalyptus marginata) forest of Western Australia in relation to dieback age and topography. Australian Journal of Botany, 2002, 50, 107.	0.3	27
178	Ecological restoration in the slipstream of agricultural policy in the old and new world. Agriculture, Ecosystems and Environment, 2004, 103, 601-611.	2.5	27
179	Restoration as a Process of Assembly and Succession Mediated by Disturbance. , 2007, , 150-167.		27
180	The Future of Restoration Ecology: Challenges and Opportunities. Restoration Ecology, 2005, 13, 239-241.	1.4	25

#	Article	IF	CITATIONS
181	Landscape pattern analysis: key issues and challenges. , 2007, , 39-61.		25
182	Interactive effects of altered rainfall and simulated nitrogen deposition on seedling establishment in a global biodiversity hotspot. Oikos, 2012, 121, 2014-2025.	1.2	25
183	A Long-Term Experimental Case Study of the Ecological Effectiveness and Cost Effectiveness of Invasive Plant Management in Achieving Conservation Goals: Bitou Bush Control in Booderee National Park in Eastern Australia. PLoS ONE, 2015, 10, e0128482.	1.1	25
184	Keep ecological restoration open and flexible. Nature Ecology and Evolution, 2018, 2, 580-580.	3.4	25
185	Novel resources: opportunities for and risks to species conservation. Frontiers in Ecology and the Environment, 2020, 18, 558-566.	1.9	25
186	The need for pluralism in landscape models: a reply to Dunn and Majer. Oikos, 2007, 116, 1419-1421.	1.2	24
187	Broadening the Extinction Debate: Population Deletions and Additions in California and Western Australia. Conservation Biology, 1998, 12, 271-283.	2.4	24
188	Nonâ€ŧarget impacts of weed control on birds, mammals, and reptiles. Ecosphere, 2017, 8, e01804.	1.0	24
189	Gophers and grassland: a model of vegetation response to patchy soil disturbance. , 1987, , 141-146.		24
190	Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. Forest Ecology and Management, 2015, 354, 10-17.	1.4	23
191	Effectiveness of biodiversity offsets: An assessment of a controversial offset in Perth, Western Australia. Biological Conservation, 2018, 228, 291-300.	1.9	23
192	Translocations of digging mammals and their potential for ecosystem restoration: a review of goals and monitoring programmes. Mammal Review, 2020, 50, 382-398.	2.2	23
193	High genetic diversity in a clonal relict Alexgeorgea nitens (Restionaceae): implications for ecological restoration. Australian Journal of Botany, 2010, 58, 206.	0.3	22
194	The differential influences of humanâ€induced disturbances on tree regeneration community: a landscape approach. Ecosphere, 2014, 5, 1-17.	1.0	22
195	No safety netÂin the face of climate change: The case of pastoralists in Kunene Region, Namibia. PLoS ONE, 2020, 15, e0238982.	1.1	22
196	Natural ecosystems: Pattern and process in relation to local and landscape diversity in southwestern Australian woodlands. Plant and Soil, 2003, 257, 371-378.	1.8	21
197	Long-term impact of prescribed burning on the nutrient status and fuel loads of rehabilitated bauxite mines in Western Australia. Forest Ecology and Management, 2004, 190, 227-239.	1.4	21
198	Conservation opportunities on uncontested lands. Nature Sustainability, 2020, 3, 9-15.	11.5	21

#	Article	IF	CITATIONS
199	Heavy Metal Concentrations in Plants Growing on a Copper Mine Spoil in the Grand Canyon, Arizona. American Midland Naturalist, 1986, 115, 277.	0.2	20
200	Australia: State of the environment 1996. Landscape and Urban Planning, 1997, 38, 133-134.	3.4	20
201	Case Study: Management of Novel Ecosystems in the Seychelles. , 2013, , 228-238.		20
202	Ecological connectivity or Barrier Fence? Critical choices on the agricultural margins of Western Australia. Ecological Management and Restoration, 2014, 15, 180-190.	0.7	20
203	Vehicle tracks are predator highways in intact landscapes. Biological Conservation, 2018, 228, 281-290.	1.9	20
204	<i>Restoration Ecology</i> 's silver jubilee: innovation, debate, and creating a future for restoration ecology. Restoration Ecology, 2018, 26, 801-805.	1.4	20
205	Global metaâ€analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. Journal of Applied Ecology, 2022, 59, 358-372.	1.9	20
206	Assessing the ecological risk from secondary salinity: A framework addressing questions of scale and threshold responses. Austral Ecology, 2005, 30, 537-545.	0.7	19
207	Managing plant populations in fragmented landscapes: restoration or gardening?. Australian Journal of Botany, 2007, 55, 371.	0.3	19
208	Does habitat structure influence capture probabilities? A study of reptiles in a eucalypt forest. Wildlife Research, 2009, 36, 509.	0.7	19
209	The relative influence of in situ and neighborhood factors on reptile recolonization in postâ€mining restoration sites. Restoration Ecology, 2016, 24, 517-527.	1.4	19
210	Resilience at the individual plant level. Tasks for Vegetation Science, 1986, , 65-82.	0.6	19
211	Landscapes, ecology and wildlife management in highly modified environments - an Australian perspective. Wildlife Research, 2005, 32, 389.	0.7	18
212	Woody shrubs and herbivory influence tree encroachment in the sandplain heathlands of southwestern Australia. Journal of Applied Ecology, 2010, 47, 441-450.	1.9	18
213	Does coarse woody debris density and volume influence the terrestrial vertebrate community in restored bauxite mines?. Forest Ecology and Management, 2014, 318, 142-150.	1.4	18
214	Isolation predicts compositional change after discrete disturbances in a global metaâ€study. Ecography, 2017, 40, 1256-1266.	2.1	18
215	Linear infrastructure impacts on landscape hydrology. Journal of Environmental Management, 2018, 206, 446-457.	3.8	18
216	Engineering restoration for the future. Ecological Engineering, 2021, 159, 106103.	1.6	18

#	Article	IF	CITATIONS
217	A threatened ecological community: research advances and priorities for Banksia woodlands. Australian Journal of Botany, 2021, 69, 53.	0.3	18
218	The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology, 2022, 103, e3650.	1.5	18
219	The ecological context: a landscape perspective. , 2002, , 24-46.		17
220	Integrative landscape research: facts and challenges. , 2007, , 246-268.		17
221	An overview of the ecology, management and conservation of Australia's temperate woodlands. Ecological Management and Restoration, 2010, 11, 201-209.	0.7	17
222	Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. Soil Biology and Biochemistry, 2016, 93, 119-130.	4.2	17
223	Expanding the Portfolio: Conserving Nature's Masterpieces in a Changing World. BioScience, 2017, 67, 568-575.	2.2	17
224	Where to from here? Challenges for restoration and revegetation in a fast-changing world. Rangeland Journal, 2017, 39, 563.	0.4	17
225	Function of Biodiversity in the Mediterranean-Type Ecosystems of Southwestern Australia. Ecological Studies, 1995, , 233-284.	0.4	17
226	Possible Chemical Interactions among Heathland Plants. Oikos, 1984, 43, 23.	1.2	16
227	The importance of grasstrees (Xanthorrhoea preissii) as habitat for mardo (Antechinus flavipes) Tj ETQq1 1 0.78	4314.rgBT 0.7	Overlock 10
228	Modeling disturbance-based native invasive species control and its implications for management. , 2013, 23, 1331-1344.		16
229	Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. Journal of Vegetation Science, 2018, 29, 285-296.	1.1	16
230	Tradeoffs in demographic mechanisms underlie differences in species abundance and stability. Nature Communications, 2018, 9, 5047.	5.8	16
231	Habitat Networks and Biological Conservation. , 2002, , 150-170.		16
232	Ecosystem roles and conservation status of bioturbator mammals. Mammal Review, 2022, 52, 192-207.	2.2	15
233	Contribution of the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. Ecological Research, 1994, 9, 351-356.	0.7	14
234	Incorporating Geological Effects in Modeling of Revegetation Strategies for Salt-Affected Landscapes. Environmental Management, 1999, 24, 99-109.	1.2	14

#	ARTICLE	IF	CITATIONS
235	Restoration of OCBILs in south-western Australia: Response to Hopper. Plant and Soil, 2010, 330, 15-18.	1.8	14
236	Microsite and litter cover effects on seed banks vary with seed size and dispersal mechanisms: implications for revegetation of degraded saline land. Plant Ecology, 2012, 213, 1145-1155.	0.7	14
237	Edge effects across boundaries between natural and restored jarrah (<scp><i>E</i></scp> <i>ucalyptus marginata</i>) forests in southâ€western <scp>A</scp> ustralia. Austral Ecology, 2015, 40, 186-197.	0.7	14
238	Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. Ecology, 2017, 98, 500-511.	1.5	14
239	Integrating Economic and Ecological Considerations: A Theoretical Framework. , 1993, , 209-244.		14
240	Ecology of the western bearded dragon (Pogona minor) in unmined forest and forest restored after bauxite mining in south-west Western Australia. Australian Journal of Zoology, 2007, 55, 107.	0.6	14
241	Harvesting rate of the termite, Drepanotermes tamminensis (Hill) within native woodland and shrubland of the Western Australian wheatbelt. Ecological Research, 1993, 8, 269-275.	0.7	13
242	Overstorey and juvenile response to thinning and drought in a jarrah (Eucalyptus marginata Donn ex) Tj ETQq0 (0 0 1gBT /C	Overlock 10 Th
243	Bioturbation by a reintroduced digging mammal reduces fuel loads in an urban reserve. Ecological Applications, 2020, 30, e02018.	1.8	13
244	Exotic plant invasion and understorey species richness: a comparison of two types of eucalypt woodland in agricultural Western Australia. Pacific Conservation Biology, 1998, 4, 21.	0.5	13
245	How many mature microhabitats does a slow-recolonising reptile require? Implications for restoration of bauxite minesites in south-western Australia. Australian Journal of Zoology, 2011, 59, 9.	0.6	13
246	VEGETATIVE REGROWTH FOLLOWING CUTTING IN THE SHRUB BACCHARIS PILULARIS SSP. CONSANGUINEA (DC) C. B. WOLF. , 1985, 72, 514.		13
247	The influence of local elevation on soil properties and tree health in remnant eucalypt woodlands affected by secondary salinity. Plant and Soil, 2004, 265, 175-188.	1.8	12
248	Spatial heterogeneity and ecosystem processes. , 0, , 62-77.		12
249	Case Study: Geographic Distribution and Level of Novelty of Puerto Rican Forests. , 2013, , 81-87.		12
250	Do stateâ€andâ€transition models derived from vegetation succession also represent avian succession in restored mine pits?. Ecological Applications, 2015, 25, 1790-1806.	1.8	12

251	Soil-vegetation type, stem density and species richness influence biomass of restored woodland in south-western Australia. Forest Ecology and Management, 2015, 344, 53-62.	1.4	12
252	The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty. Journal of Mammalogy, 2019, 100, 410-422.	0.6	12

15

#	Article	IF	CITATIONS
253	Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. Ecological Engineering, 2021, 165, 106222.	1.6	12
254	The Effects of Planting Technique on the Growth of Ammophila arenaria (L.) Link and Lymus arenarius (L.) Hochst. Journal of Applied Ecology, 1983, 20, 659.	1.9	11
255	Distribution of understorey species in forest affected by Phytophthora cinnamomi in south-western Western Australia. Australian Journal of Botany, 2005, 53, 813.	0.3	11
256	Home Range Size and Microâ€habitat Density Requirements of <i>Egernia napoleonis</i> : Implications for Restored Jarrah Forest of South Western Australia. Restoration Ecology, 2012, 20, 740-746.	1.4	11
257	Microhabitat Preference of <i>Egernia napoleonis</i> inÂUndisturbed Jarrah Forest, and Availability andÂIntroduction of Microhabitats to Encourage Colonization of Restored Forest. Restoration Ecology, 2013, 21, 722-728.	1.4	11
258	Do novel ecosystems provide habitat value for wildlife? Revisiting the physiognomy vs. floristics debate. Ecosphere, 2018, 9, e02172.	1.0	11
259	A study of pattern and process in coastal vegetation using principal components analysis. Plant Ecology, 1981, 44, 137-153.	1.2	10
260	Adequate data of known accuracy are critical to advancing the field of landscape ecology. , 0, , 11-38.		10
261	Applying landscape-ecological principles to regional conservation: the WildCountry Project in Australia. , 2007, , 192-213.		10
262	Jarrah Forest Ecosystem Restoration: A Foreword. Restoration Ecology, 2007, 15, S1-S2.	1.4	10
263	Lines in the sand: quantifying the cumulative development footprint in the world's largest remaining temperate woodland. Landscape Ecology, 2017, 32, 1969-1986.	1.9	10
264	A triage framework for managing novel, hybrid, and designed marine ecosystems. Global Change Biology, 2019, 25, 3215-3223.	4.2	10
265	Microâ€scale geography of synchrony in a serpentine plant community. Journal of Ecology, 2021, 109, 750-762.	1.9	10
266	A rocky heart in a spinifex sea: occurrence of an endangered marsupial predator is multiscale dependent in naturally fragmented landscapes. Landscape Ecology, 2021, 36, 1359-1376.	1.9	10
267	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2021, 109, 3892-3902.	1.9	10
268	Clark Kent or Superman: Where Is the Phone Booth for Landscape Ecology?. , 1999, , 11-23.		10
269	Title is missing!. Agroforestry Systems, 1999, 45, 365-394.	0.9	9
270	Additions to the host range of Phytophthora cinnamomi in the jarrah (Eucalyptus marginata) forest of Western Australia. Australian Journal of Botany, 2001, 49, 193.	0.3	9

#	Article	IF	CITATIONS
271	The influence of local elevation on the effects of secondary salinity in remnant eucalypt woodlands: Changes in understorey communities. Plant and Soil, 2004, 265, 253-266.	1.8	9
272	Restoration ecology and the role of soil biodiversity. , 2005, , 319-342.		9
273	Movement patterns by Egernia napoleonis following reintroduction into restored jarrah forest. Wildlife Research, 2011, 38, 475.	0.7	9
274	The evolution of Society for Ecological Restoration's principles and standards—counterâ€response to Gann et al Restoration Ecology, 2018, 26, 431-433.	1.4	9
275	Glomalin-Related Soil Protein Reflects the Heterogeneity of Substrate and Vegetation in the campo rupestre Ecosystem. Journal of Soil Science and Plant Nutrition, 2021, 21, 733-743.	1.7	9
276	Landscape and Regional Planning for Conservation: Issues and Practicalities. , 2002, , 360-380.		9
277	Impacts of Land Use on Biodiversity in Southwestern Australia. Ecological Studies, 1998, , 81-106.	0.4	9
278	Recovery of shrubland communities on abandoned farmland in southwestern Australia: soils, plants, birds and arthropods. Pacific Conservation Biology, 1999, 5, 163.	0.5	9
279	Influence of vegetation and soil types on the wheatbelt termite, Drepanotermes tamminensis (Hill), in the Western Australian wheatbelt. Ecological Research, 1994, 9, 151-158.	0.7	8
280	Major faults and the development of dryland salinity in the western wheatbelt of Western Australia. Hydrology and Earth System Sciences, 1998, 2, 77-91.	1.9	8
281	Transferring ecological knowledge to landscape planning: a design method for robust corridors. , 0, , 227-245.		8
282	<i>Restoration Ecology</i> : Are We Making an Impact?. Restoration Ecology, 2007, 15, 597-600.	1.4	8
283	Estimating nutrient budgets for prescribed thinning in a regrowth eucalyptus forest in south-west Australia. Forestry, 2012, 85, 51-61.	1.2	8
284	Evolving away from the linear model of research: a response to Courchamp et al Trends in Ecology and Evolution, 2015, 30, 368-370.	4.2	8
285	Biodiversity change in heathland and its relationships with shifting local fire regimes and native species expansion. Journal of Plant Ecology, 2015, 8, 17-29.	1.2	8
286	Current vegetation structure and composition of woody species in communityâ€derived categories of land degradation in a semiarid rangeland in Kunene region, Namibia. Land Degradation and Development, 2020, 31, 2996-3013.	1.8	8
287	What can agriculture learn from natural ecosystems?. Agroforestry Systems, 1999, 45, 425-438.	0.9	7
288	Overcoming barriers to effective public communication of ecology. Frontiers in Ecology and the Environment, 2006, 4, 496-497.	1.9	7

#	Article	IF	CITATIONS
289	Natural Resource Management at Four Social Scales: Psychological Type Matters. Environmental Management, 2010, 45, 590-602.	1.2	7
290	Conversations with Lesley Head about <i>Hope and Grief in the Anthropocene: Reconceptualising Humanâ€Nature Relations</i> . Geographical Research, 2018, 56, 325-335.	0.9	7
291	Beyond ecological modelling: ground-truthing connectivity conservation networks through a design charrette in Western Australia. Landscape and Urban Planning, 2019, 191, 103122.	3.4	7
292	Thinking systemically about ecological interventions: what do system archetypes teach us?. Restoration Ecology, 2020, 28, 1017-1025.	1.4	7
293	Rock removal associated with agricultural intensification will exacerbate the loss of reptile diversity. Journal of Applied Ecology, 2021, 58, 1557-1565.	1.9	7
294	The wheatbelt of Western Australia. Pacific Conservation Biology, 2003, 9, 9.	0.5	7
295	Computer modelling of the effect of revegetation strategies on salinity in the western wheatbelt of Western Australia 2 Soil Research, 1998, 36, 131.	0.6	7
296	Shoot regeneration after fire or freezing temperatures and its relation to plant life-form for some heathland species. Plant Ecology, 1984, 55, 181-189.	1.2	6
297	Fragmented landscapes in Western Australia: Introduction. Biological Conservation, 1993, 64, 183-184.	1.9	6
298	Degrading Landscapes: Lessons from Palliative Care. EcoHealth, 2001, 7, 203-213.	0.2	6
299	Restoration ecology and landscape ecology. , 2005, , 217-229.		6
300	Straw man or scaffolding? Building the foundations of urban ecology: a reply to McDonnell et al Trends in Ecology and Evolution, 2012, 27, 256-257.	4.2	6
301	Case Study: Novel Socioâ€Ecological Systems in the North: Potential Pathways Toward Ecological and Societal Resilience. , 2013, , 334-344.		6
302	Climate change indirectly reduces breeding frequency of a mobile species through changes in food availability. Ecosphere, 2019, 10, e02656.	1.0	6
303	Morphological and molecular variation in Conospermum triplinervium (Proteaceae), the tree smokebush: implications for bushland restoration. Australian Journal of Botany, 2008, 56, 451.	0.3	6
304	Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. Plant and Soil, 2022, 472, 577-594.	1.8	6
305	Capacity for change: three core attributes of adaptive capacity that bolster restoration efficacy. Restoration Ecology, 0, , .	1.4	6

An integrated approach to landscape science and management. , 2002, , 412-430.

#	Article	IF	CITATIONS
307	Conserving reptiles within a multiple-use landscape: determining habitat affiliations of reptile communities in the northern jarrah forest of south-western Australia. Australian Journal of Zoology, 2017, 65, 21.	0.6	5
308	Burrowing by translocated boodie (Bettongia lesueur) populations alters soils but has limited effects on vegetation. Ecology and Evolution, 2021, 11, 2596-2615.	0.8	5
309	Novel ecosystems. , 2017, , .		5
310	Molecular markers detect multiple origins of Agonis flexuosa (Myrtaceae) plants used in urban bushland restoration. Ecological Management and Restoration, 2006, 7, 234-235.	0.7	4
311	Perspectives and prospects of landscape ecology. , 0, , 3-8.		4
312	Determining pattern–process relationships in heterogeneous landscapes. , 2007, , 92-114.		4
313	IV.2 Landscape Pattern and Biodiversity. , 2009, , 431-437.		4
314	Microsite and litter cover effects on soil conditions and seedling recruitment in a saline agricultural system. Plant and Soil, 2011, 348, 397-409.	1.8	4
315	Case Study: Ecosystem Transformations along the Colorado Front Range: Prairie Dog Interactions with Multiple Components of Global Environmental Change. , 2013, , 142-149.		4
316	Diverse outcomes of species interactions in an invaded annual plant community. Journal of Plant Ecology, 0, , rtw102.	1.2	4
317	New evidence of seed dispersal identified in Australian mammals. Wildlife Research, 2021, 48, 635-642.	0.7	4
318	LEAF AND SHOOT DEMOGRAPHY IN BACCHARIS SHRUBS OF DIFFERENT AGES. , 1987, 74, 1111.		4
319	Restoring Jarrah Forest after Bauxite Mining in Western Australia — The Effect of Fertilizer on Floristic Diversity and Composition. , 2008, , .		4
320	LEAF AND SHOOT DEMOGRAPHY IN BACCHARIS SHRUBS OF DIFFERENT AGES. American Journal of Botany, 1987, 74, 1111-1115.	0.8	3
321	Comparison of colonisation byPhytophthora cinnamomiin detached stem tissue ofEucalyptus marginatain relation to site disease status. Australasian Plant Pathology, 2007, 36, 498.	0.5	3
322	Rewilding and restoration. , 2019, , 123-141.		3
323	Gut passage time and viability of seeds consumed by Australian marsupials. Australian Mammalogy, 2021, 43, 363.	0.7	3

Conservation Management in Fragmented Systems. , 1993, , 279-296.

#	Article	IF	CITATIONS
325	Conclusions. Can We Reintegrate Fragmented Landscapes?. , 1993, , 299-309.		3
326	A model of litter harvesting by the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), with particular reference to nutrient dynamics. Ecological Research, 1996, 11, 69-78.	0.7	2
327	Optimization of landscape pattern. , 2007, , 143-160.		2
328	Perspective: From Rivets to Rivers. , 2013, , 153-156.		2
329	<i>Restoration Ecology</i> at 25 years: the editors reflect on how we got here. Restoration Ecology, 2018, 26, 1009-1012.	1.4	2
330	Temporal longevity of unidirectional and dynamic filters to faunal recolonization in postâ€mining forest restoration. Austral Ecology, 2018, 43, 973-988.	0.7	2
331	Identifying optimal solutions between competing economic and conservation land use objectives for species that require widely distributed resources. Environmental Modelling and Software, 2022, 148, 105292.	1.9	2
332	Offshore platforms as novel ecosystems: A case study from Australia's Northwest Shelf. Ecology and Evolution, 2022, 12, e8496.	0.8	2
333	Disturbance, Diversity, and Invasion: Implications for Conservation. , 1992, , 164-180.		1
334	Advances in detecting landscape changes at multiple scales: examples from northern Australia. , 0, , 161-172.		1
335	Using landscape ecology to make sense of Australia's last frontier. , 0, , 214-226.		1
336	The Diverse Impacts of Grazing, Fire and Weeds: How Ecological Theory Can Inform Conservation Management. , 0, , 111-130.		1
337	Synthesis: Structure, Degradation and Condition. , 0, , 146-148.		1
338	Synthesis: Edge Effects. , 0, , 195-197.		1
339	Synthesis: Corridors, Connectivity and Stepping Stones. , 0, , 290-292.		1
340	Ecosystems, Ecosystem Processes and Global Change: Implications for Landscape Design. , 0, , 347-364.		1
341	Landscape Models for Use in Studies of Landscape Change and Habitat Fragmentation. , 0, , 35-48.		1

#	Article	IF	CITATIONS
343	Synthesis: Landscape Classification. , 0, , 49-51.		1
344	Case Study: Do Feedbacks from the Soil Biota Secure Novelty in Ecosystems?. , 2013, , 124-126.		1
345	The Management Framework in Practice - Making Decisions in AtlanticCanadian Meadows: Chasing the Elusive Reference State. , 2013, , 172-175.		1
346	Case Study: Novelty Measurement in Pampean Grasslands. , 2013, , 205-211.		1
347	Perspective: Coming of Age in a Trash Forest. , 2013, , 243-246.		1
348	Case Study: A Rocky Novel Ecosystem: Industrial Origins to Conservation Concern. , 2013, , 269-271.		1
349	Nonâ€native plants and nitrogen addition have little effect on pollination and seed set in 3â€yearâ€old restored woodland. Austral Ecology, 2020, 45, 1156-1168.	0.7	1
350	Case Study: Shale Bings in Central Scotland: From Ugly Blots on the Landscape to Cultural and Biological Heritage. , 0, , 286-289.		1
351	Resource webs in Mediterranean-type climates. Tasks for Vegetation Science, 1994, , 73-81.	0.6	1
352	Biodiversity in Australia. Conservation Biology, 1996, 10, 1485-1486.	2.4	0
353	Synthesis: Total Vegetation Cover, Pattern and Patch Content. , 0, , 245-247.		Ο
354	Synthesis: Individual Species Management-Threatened Taxa and Invasive Species. , 0, , 343-345.		0
355	Synthesis: Ecosystems and Ecosystem Processes. , 0, , 390-392.		Ο
356	Synthesis: Disturbance, Resilience and Recovery. , 0, , 23-25.		0
357	Synthesis: Aquatic Ecosystems and Integrity. , 0, , 73-75.		Ο
358	A Contribution to the Development of a Conceptual Framework for Landscape Management: A Landscape State and Transition Model. , 0, , 527-545.		0
359	Synthesis: Habitat, Habitat Loss and Patch Sizes. , 0, , 96-98.		0
360	V.7 Restoration Ecology. , 2009, , 566-572.		0

1.7.1				-	DDC
1X I		AR			nns.
	.	.,	<u> </u>		000

#	Article	IF	CITATIONS
361	Australia: better solutions to wildfires. Nature, 2012, 482, 471-471.	13.7	0
362	Case Study: Holeâ€inâ€theâ€Donut, Everglades. , 2013, , 9-15.		0
363	Perspective: Plus Ça Change, Plus C'est La Même Chose. , 2013, , 150-151.		0
364	The Management Framework in Practice - Designer Wetlands as Novel Ecosystems. , 2013, , 189-191.		0
365	Perspective: Moving to the Dark Side. , 2013, , 239-241.		0
366	Perspective: Lake Burley Griffin. , 2013, , 284-285.		0
367	A Tale of Two Continents: The Growth and Maturation of Landscape Ecology in North America and Australia. , 2015, , 143-161.		0
368	Does the need to drink influence nest site selection in a wide-ranging threatened cockatoo?. Forest Ecology and Management, 2022, 505, 119928.	1.4	0