Elena Grachova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9118726/publications.pdf

Version: 2024-02-01

90 1,749 23 36
papers citations h-index g-index

91 91 91 2037 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands. Inorganic Chemistry Frontiers, 2022, 9, 417-439.	6.0	31
2	The Tail Wags the Dog: The Far Periphery of the Coordination Environment Manipulates the Photophysical Properties of Heteroleptic Cu(I) Complexes. Molecules, 2022, 27, 2250.	3.8	1
3	So Close, Yet so Different: How One Donor Atom Changes Significantly the Photophysical Properties of Mononuclear Cu(l) Complexes. Inorganic Chemistry, 2022, 61, 11629-11638.	4.0	8
4	Controllable Synthesis and Luminescence Behavior of Tetrahedral Au@Cu ₄ and Au@Ag ₄ Clusters Supported by tris(2-Pyridyl)phosphine. Inorganic Chemistry, 2022, 61, 10925-10933.	4.0	11
5	Modulation of Metallophilic and π–π Interactions in Platinum Cyclometalated Luminophores with Halogen Bonding. Chemistry - A European Journal, 2021, 27, 1787-1794.	3.3	18
6	Keep it tight: a crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes. Dalton Transactions, 2021, 50, 6003-6033.	3.3	25
7	Diversifying the luminescence of phenanthro-diimine ligands in zinc complexes. Inorganic Chemistry Frontiers, 2021, 8, 2549-2560.	6.0	16
8	Photophysics and Excited State Dynamics of Cyclometalated [M(Phbpy)(CN)] (M = Ni, Pd, Pt) Complexes: A Theoretical and Experimental Study. Inorganic Chemistry, 2021, 60, 8777-8789.	4.0	21
9	Functionalizing Collagen with Vesselâ€Penetrating Twoâ€Photon Phosphorescence Probes: A New In Vivo Strategy to Map Oxygen Concentration in Tumor Microenvironment and Tissue Ischemia. Advanced Science, 2021, 8, e2102788.	11.2	5
10	Ditopic Phosphide Oxide Group: A Rigidifying Lewis Base to Switch Luminescence and Reactivity of a Disilver Complex. Journal of the American Chemical Society, 2021, 143, 15045-15055.	13.7	12
11	Cu(I)-based molecular emitters for quantification of fluoride and phosphate in surface waters. Measurement: Journal of the International Measurement Confederation, 2021, 184, 109976.	5.0	3
12	Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems. Chemistry Proceedings, $2021, 5, \ldots$	0.1	0
13	Re(I) Complexes as Backbone Substituents and Cross-Linking Agents for Hybrid Luminescent Polysiloxanes and Silicone Rubbers. Molecules, 2021, 26, 6866.	3 . 8	5
14	Just Add the Gold: Aggregation-Induced-Emission Properties of Alkynylphosphinegold(I) Complexes Functionalized with Phenylene–Terpyridine Subunits. Inorganic Chemistry, 2021, 60, 18715-18725.	4.0	6
15	Solvatochromic dual luminescence of Eu–Au dyads decorated with chromophore phosphines. Inorganic Chemistry Frontiers, 2020, 7, 140-149.	6.0	16
16	Binuclear Gold(I) Phosphine Alkynyl Complexes Templated on a Flexible Cyclic Phosphine Ligand: Synthesis and Some Features of Solid-State Luminescence. Inorganic Chemistry, 2020, 59, 244-253.	4.0	15
17	Hexavanadate–Organogold(I) Hybrid Compounds: Synthesis by the Azide–Alkyne Cycloaddition and Density Functional Theory Study of an Intriguing Electron Density Distribution. Inorganic Chemistry, 2020, 59, 16122-16126.	4.0	7
18	Luminescence behaviour of Au(<scp>i</scp>)–Cu(<scp>i</scp>) heterobimetallic coordination polymers based on alkynyl-tris(2-pyridyl)phosphine Au(<scp>i</scp>) complexes. Dalton Transactions, 2020, 49, 13430-13439.	3.3	15

#	Article	IF	Citations
19	Silver-Decorated TiO ₂ Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41200-41210.	8.0	41
20	Cyclometalated Ir(III) complexes as tuneable multiband light sources for optical multisensor systems: Feasibility study. Dyes and Pigments, 2020, 180, 108428.	3.7	8
21	Design of Supramolecular Cluster Compounds of Copper Subgroup Metals Based on Polydentate Phosphine Ligands. Russian Journal of General Chemistry, 2019, 89, 1102-1114.	0.8	6
22	Oligophosphine-thiocyanate Copper(I) and Silver(I) Complexes and Their Borane Derivatives Showing Delayed Fluorescence. Inorganic Chemistry, 2019, 58, 3646-3660.	4.0	47
23	Supramolecular Construction of Cyanide-Bridged Rel Diimine Multichromophores. Inorganic Chemistry, 2019, 58, 1988-2000.	4.0	12
24	Inkjet Printing of Multicolor Daylight Visible Opal Holography. Advanced Functional Materials, 2018, 28, 1706903.	14.9	47
25	Binuclear luminescent Pt(II) complexes based on substituted 3,6-diphenylpyridazines; synthesis and photophysical study. Journal of Organometallic Chemistry, 2018, 867, 367-374.	1.8	3
26	Luminescence Thermochromism of Gold(I) Phosphane–Iodide Complexes: A Rule or an Exception?. Chemistry - A European Journal, 2018, 24, 3021-3029.	3.3	16
27	A rare example of a compact heteroleptic cyclometalated iridium(<scp>iii</scp>) complex demonstrating well-separated dual emission. Dalton Transactions, 2018, 47, 7578-7586.	3.3	22
28	Synthesis, photophysical properties and cation-binding studies of bipyridine-functionalized gold(<scp>i</scp>) complexes. Inorganic Chemistry Frontiers, 2018, 5, 160-171.	6.0	18
29	Heterometallic Cluster apped Tetrahedral Assemblies with Postsynthetic Modification of the Metal Cores. Angewandte Chemie, 2018, 130, 14350-14354.	2.0	4
30	Heteroleptic \hat{l}^2 -diketonate Ln($\langle scp \rangle iii \langle scp \rangle$) complexes decorated with pyridyl substituted pyridazine ligands: synthesis, structure and luminescence properties. Inorganic Chemistry Frontiers, 2018, 5, 3015-3027.	6.0	25
31	Heterometallic Cluster apped Tetrahedral Assemblies with Postsynthetic Modification of the Metal Cores. Angewandte Chemie - International Edition, 2018, 57, 14154-14158.	13.8	30
32	Chromophore-Functionalized Phenanthro-diimine Ligands and Their Re(I) Complexes. Inorganic Chemistry, 2018, 57, 6349-6361.	4.0	39
33	Improvement of the Photophysical Performance of Platinumâ€Cyclometalated Complexes in Halogenâ€Bonded Adducts. Chemistry - A European Journal, 2018, 24, 11475-11484.	3.3	39
34	Polynuclear cage-like Au(<scp>i</scp>) phosphane complexes based on a S ^{2â^'} template: observation of multiple luminescence in coordinated polyaromatic systems. Dalton Transactions, 2017, 46, 2516-2523.	3.3	14
35	Silver Alkynyl-Phosphine Clusters: An Electronic Effect of the Alkynes Defines Structural Diversity. Organometallics, 2017, 36, 480-489.	2.3	27
36	Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex. Scientific Reports, 2017, 7, 41991.	3.3	13

3

#	Article	IF	Citations
37	Linking Re ^I and Pt ^{II} Chromophores with Aminopyridines: A Simple Route to Achieve a Complicated Photophysical Behavior. Chemistry - A European Journal, 2017, 23, 11301-11311.	3.3	10
38	A model electrode of well-defined geometry prepared by direct laser-induced decoration of nanoporous templates with Au–Ag@C nanoparticles. Nanotechnology, 2017, 28, 065405.	2.6	9
39	Gold(I)–Alkynyl Complexes with an Nâ€Đonor Heterocyclic Ligand: Synthesis and Photophysical Properties. European Journal of Inorganic Chemistry, 2017, 2017, 4180-4186.	2.0	11
40	Gold(I) Alkynyls Supported by Mono- and Bidentate NHC Ligands: Luminescence and Isolation of Unprecedented Ionic Complexes. Inorganic Chemistry, 2017, 56, 14771-14787.	4.0	27
41	Luminescent copper(I) and gold(I) complexes of 1,5-diaza-3,7-diphosphacyclooctanes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1518-1519.	1.6	3
42	Supramolecular Au ^I –Cu ^I Complexes as New Luminescent Labels for Covalent Bioconjugation. Bioconjugate Chemistry, 2016, 27, 143-150.	3.6	13
43	A stimuli-responsive Au(<scp>i</scp>) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties. CrystEngComm, 2016, 18, 7629-7635.	2.6	30
44	Adjustable coordination of a hybrid phosphine–phosphine oxide ligand in luminescent Cu, Ag and Au complexes. Dalton Transactions, 2016, 45, 14160-14173.	3.3	17
45	A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals. Scientific Reports, 2016, 6, 25548.	3.3	5
46	Low-Nuclearity Alkynyl d ¹⁰ Clusters Supported by Chelating Multidentate Phosphines. Organometallics, 2016, 35, 3763-3774.	2.3	25
47	Luminescence Switching of a Gold–Copper Supramolecular Complex: A Physical Insight. Journal of Physical Chemistry C, 2016, 120, 25541-25547.	3.1	7
48	Harnessing Fluorescence versus Phosphorescence Ratio via Ancillary Ligand Fine-Tuned MLCT Contribution. Journal of Physical Chemistry C, 2016, 120, 12196-12206.	3.1	25
49	Aurophilicity in Action: Fine-Tuning the Gold(I)–Gold(I) Distance in the Excited State To Modulate the Emission in a Series of Dinuclear Homoleptic Gold(I)–NHC Complexes. Inorganic Chemistry, 2016, 55, 4720-4732.	4.0	59
50	Solid-State and Solution Metallophilic Aggregation of a Cationic [Pt(NCN)L] < sup>+ < /sup> Cyclometalated Complex. Inorganic Chemistry, 2016, 55, 3351-3363.	4.0	68
51	Synthesis of novel pyridyl containing phospholanes and their polynuclear luminescent copper(<scp>i</scp>) complexes. Dalton Transactions, 2016, 45, 2250-2260.	3.3	63
52	Rhenium(I) Complexes with Alkynylphosphane Ligands: Structural, Photophysical, and Theoretical Studies. European Journal of Inorganic Chemistry, 2015, 2015, 864-875.	2.0	10
53	Syntheses, Structures, and Photophysical Properties of Eu and Lu Diketonates with a Neutral Polydentate Imidazolylmethanamine Ligand. European Journal of Inorganic Chemistry, 2015, 2015, 1734-1743.	2.0	8
54	Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures. Scientific Reports, 2015, 5, 12027.	3.3	25

#	Article	IF	CITATIONS
55	Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron. Scientific Reports, 2015, 5, 8710.	3.3	17
56	A new heterocyclic skeleton with highly tunable absorption/emission wavelength via H-bonding. RSC Advances, 2015, 5, 94551-94561.	3 . 6	18
57	Comment on "The ligand polyhedral model approach to the mechanism of complete carbonyl exchange in [Rh ₄ (CO) ₁₂] and [Rh ₆ (CO) ₁₆]―by Brian F. G. Johnson, Dalton Transactions, 2015, 44, DOI: 10.1039/C4DT03360D. Dalton Transactions, 2015, 44, 16611-16613.	3.3	4
58	Tetragold(I) Complexes: Solution Isomerization and Tunable Solid-State Luminescence. Inorganic Chemistry, 2014, 53, 12720-12731.	4.0	45
59	Coinage Metal Complexes Supported by the Tri- and Tetraphosphine Ligands. Inorganic Chemistry, 2014, 53, 4705-4715.	4.0	39
60	Metallophilicity-assisted assembly of phosphine-based cage molecules. Dalton Transactions, 2014, 43, 6236.	3.3	18
61	Insight into the electronic structure of the supramolecular "rods-in-belt―AulCul and AulAgl self-assembled complexes from X-ray photoelectron and absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 192, 26-34.	1.7	2
62	Luminescent Gold(I) Alkynyl Clusters Stabilized by Flexible Diphosphine Ligands. Organometallics, 2014, 33, 2363-2371.	2.3	21
63	Ferrocenyl-Functionalized Tetranuclear Gold(I) and Gold(I)-Copper(I) Complexes Based on Tridentate Phosphanes. European Journal of Inorganic Chemistry, 2013, 2013, n/a-n/a.	2.0	12
64	New Supramolecular Au ^I –Cu ^I Complex as Potential Luminescent Label for Proteins. Inorganic Chemistry, 2013, 52, 12521-12528.	4.0	19
65	Self-Assembled Supramolecular Complexes with "Rods-in-Belt―Architecture in the Light of Soft X-rays. Journal of Physical Chemistry C, 2013, 117, 12385-12392.	3.1	9
66	Toward Luminescence Vapochromism of Tetranuclear Au ^I –Cu ^I Clusters. Organometallics, 2013, 32, 4061-4069.	2.3	50
67	Luminescent heterometallic gold–copper alkynyl complexes stabilized by tridentate phosphine. Dalton Transactions, 2012, 41, 2941.	3.3	41
68	The solid-state, solution and gas–phase interactions of diphosphane monooxide spacers with heavier group 8,9 transition metals and gallium in novel organometallic assemblies: An experimental and computational study. Journal of Organometallic Chemistry, 2012, 714, 22-31.	1.8	2
69	Luminescent Au ^I –Cu ^I Triphosphane Clusters That Contain Extended Linear Arylacetylenes. European Journal of Inorganic Chemistry, 2012, 2012, 4048-4056.	2.0	21
70	Synthesis and crystal structure of Na4[Er2(EDTA)2(Î⅓2-C2O4)] ·8H2O (where EDTA stands for) Tj ETQq0 0 0	O rgBT./Ove	rlock 10 Tf 50
71	Reaction of chiral pyrrolylphosphine with polynuclear carbonyl complexes of osmium and rhodium. Russian Journal of General Chemistry, 2010, 80, 408-413.	0.8	1
72	Reactions of rhodium carbonyl clusters with heterobidentate ligands. Synthesis and structural characterization of the Rh6(CO)15[(C6H5)2PC6H4N(CH3)2] and {Rh6(CO)15[(C6H5)2PC6H4NH(CH3)2]}[GaX4] cluster compounds. Russian Journal of General Chemistry, 2010, 80, 414-422.	0.8	4

#	Article	IF	Citations
73	Bidentate Phosphine Oxides as Ligands to form Ga ^{III} Shell Complexes. [Ga(CH ₂ (P(O)Ph) ₂) ₃] ³⁺ : Synthesis, Structural and Spectroscopic Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2294-2296.	1.2	5
74	Structure, Stereochemistry and Dynamics of Tetranuclear Polyhydride Clusters Containing Chiral Heterobidentate Phosphanes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2515-2526.	1.2	1
75	Crystallochemical formula as a tool for describing metal–ligand complexes – a pyridine-2,6-dicarboxylate example. Acta Crystallographica Section B: Structural Science, 2009, 65, 45-53.	1.8	157
76	Reactions of GaCp* with a Hemilabile Derivative of Rh6(CO)16 â€" Synthesis and Structural Characterization of Two Novel Heterometallic Clusters: Rh6(CO)13(μ,κ3-Ph2PC2H3)(Î⅓3-GaCp*) and Rh6(CO)13(κ1-Ph2PC2H3)(Î⅓3-GaCp*)2. European Journal of Inorganic Chemistry, 2007, 2007, 140-146.	2.0	8
77	Reactivity of InCp* Towards Transition Metal Carbonyl Clusters: Synthesis and Structural Characterization of the Rh6(CO)16â \in "x(InCp*)x Mixed-Metal Cluster Compounds,x = 1â \in "2. European Journal of Inorganic Chemistry, 2007, 2007, 3561-3564.	2.0	10
78	Structure and dynamic properties of substituted carbonylhydride clusters H2RuOs3(CO)13 and H4Ru4(CO)12 containing functionalized phosphines. Russian Chemical Bulletin, 2007, 56, 1343-1350.	1.5	3
79	Reactions of diphenylpyridylphosphine with H2Os3(CO)10 and H4Ru4(CO)12, P–C bond splitting in the coordinated ligand and isolation of the oxidative addition products. Journal of Organometallic Chemistry, 2006, 691, 111-121.	1.8	12
80	Reactions of carbonyl clusters with heterobidentate ligands. Synthesis and structural characterization of H4Ru4(CO)10[k2(P,S)-Ph2P(2-CH3SC6H4)] and Rh6(CO)14[k2(P,S)-Ph2P(2-CH3SC6H4)] clusters. Russian Journal of General Chemistry, 2006, 76, 682-686.	0.8	3
81	Novel rhodium and ruthenium carbonyl cluster complexes with face- and edge-bridging GaCp* ligands. Synthesis and structural characterization of the Rh6(CO)12(µ3-GaCp*)4 and Ru6(η6-C)(µ2-CO)(CO)13(µ3-GaCp*)2(µ2-GaCp*) clusters. Dalton Transactions, 2005, , 3614.	3.3	10
82	Synthesis and structural characterization of two novel heterometallic clusters: [Rh4Pt2(CO)11(dppm)2] and [Ru2Rh2Pt2(CO)12(dppm)2]. Dalton Transactions, 2004, , 3893.	3.3	8
83	The structure and dynamic behaviour of disubstituted derivatives of [Rh6(CO)16] containing bidentate phosphorus ligands. Inorganica Chimica Acta, 2003, 354, 11-20.	2.4	14
84	The structure and dynamic behaviour of disubstituted derivatives of [Rh6(CO)16] containing heterobidentate bridging phosphine ligands. Dalton Transactions, 2003, , 2468.	3.3	20
85	Unusual selective substitution of triply bridging carbonyl ligands for GaCp* in Rh6(CO)16. Synthesis and structural characterization of the Rh6(l¼3-CO)4 â°x(l¼3-GaCp*)x(CO)12 clusters, xÂ= 1–4. Dalton Transactions RSC, 2002, , 302.	2.3	17
86	Stereochemical nonrigidity of [Rh6(CO)15L] clusters in solutionElectronic supplementary information (ESI) available; the relationship between the rate of S-type exchange in [Rh6(CO)15(PR3)] and the pKaÅ¢â,¬Â² values of the phosphine ligand. See http://www.rsc.org/suppdata/dt/b1/b101962g/. Dalton Transactions RSC, 2001, , 3303-3311.	2.3	17
87	Ligand effects on the structures of Rh6(CO)15L clusters. Dalton Transactions RSC, 2001, , 2015-2019.	2.3	43
88	Synthesis and structural characterisation of the mixed metal clusters [Rh2Pt3(μ-CO)5(CO)4(PPh3)3] and [Rh2Pt2(μ-CO)3(CO)4(PPh3)3]; crystal structure of [Rh2Pt3(μ-CO)5(CO)4(PPh3)3] â€. Journal of the Chemical Society Dalton Transactions, 1999, , 1609-1614.	1.1	18
89	Reactions of diacetylene ligands with trinuclear clusters II. Reactions of hexa-2,4-diyne-1,6-diol and 1,4-diphenyl-1,3-butadiyne with Ru3(CO)12. Journal of Organometallic Chemistry, 1997, 536-537, 339-343.	1.8	33
90	Efficient photoswitchable organometallic complexes with azobenzene and stilbene units: the case of Au(I). Molecular Systems Design and Engineering, $0, \dots$	3.4	2