
Fritz Zaversky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/911833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient molten salt two-tank thermal storage modeling for CSP performance simulations. Solar Energy, 2013, 93, 294-311.	6.1	108
2	Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations. Applied Energy, 2018, 210, 351-375.	10.1	71
3	Object-oriented modeling for the transient performance simulation of parabolic trough collectors using molten salt as heat transfer fluid. Solar Energy, 2013, 95, 192-215.	6.1	59
4	Object-oriented modeling for the transient response simulation of multi-pass shell-and-tube heat exchangers as applied in active indirect thermal energy storage systems for concentrated solar power. Energy, 2014, 65, 647-664.	8.8	44
5	Coupled optical and CFD parametric analysis of an open volumetric air receiver of honeycomb type for central tower CSP plants. Solar Energy, 2017, 155, 523-536.	6.1	31
6	Probabilistic modeling of a parabolic trough collector power plant – An uncertainty and sensitivity analysis. Solar Energy, 2012, 86, 2128-2139.	6.1	30
7	Modeling Solar Cavity Receivers: A Review and Comparison of Natural Convection Heat Loss Correlations. Energy Procedia, 2015, 69, 543-552.	1.8	28
8	Analysis of steel making slag pebbles as filler material for thermocline tanks in a hybrid thermal energy storage system. Solar Energy, 2019, 188, 1221-1231.	6.1	19
9	The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology. Energy, 2020, 194, 116796.	8.8	19
10	Object-oriented Modeling of Molten-salt-based Thermocline Thermal Energy Storage for the Transient Performance Simulation of Solar Thermal Power Plants. Energy Procedia, 2015, 69, 879-890.	1.8	17
11	Towards Standard Testing Materials for High Temperature Solar Receivers. Energy Procedia, 2015, 69, 532-542.	1.8	16
12	Transient Behavior of an Active Indirect Two-tank Thermal Energy Storage System During Changes in Operating Mode – An Application of an Experimentally Validated Numerical Model. Energy Procedia, 2014, 49, 1078-1087.	1.8	14
13	Benchmarking analysis of a novel thermocline hybrid thermal energy storage system using steelmaking slag pebbles as packed-bed filler material for central receiver applications. Solar Energy, 2019, 188, 644-654.	6.1	12
14	Analysis of the energy demand of the Chilean mining industry and its coverage with solar thermal technologies. International Journal of Sustainable Engineering, 2016, 9, 240-250.	3.5	11
15	Transient response simulation of a passive sensible heat storage system and the comparison to a conventional active indirect two-tank unit. Energy, 2017, 139, 782-797.	8.8	10
16	Experimental evaluation of volumetric solar absorbers – Ceramic foam vs. an innovative rotary disc absorber concept. AIP Conference Proceedings, 2018, , .	0.4	9
17	Experimental and numerical evaluation of a small array of ceramic foam volumetric absorbers. AIP Conference Proceedings, 2019, , .	0.4	6
18	A novel active volumetric rotating disks solar receiver for concentrated solar power generation. Applied Thermal Engineering, 2022, 206, 118114.	6.0	6

FRITZ ZAVERSKY

#	Article	IF	CITATIONS
19	Inspection Receiver Tubes Device for CSP Plants. Energy Procedia, 2015, 69, 1868-1876.	1.8	5
20	Heliostat structural optimization: A study of wind load effects with CFD-FEM methods. AIP Conference Proceedings, 2018, , .	0.4	5
21	Techno-Economic Optimization and Benchmarking of a Solar-Only Powered Combined Cycle with High-Temperature TES Upstream the Gas Turbine. , 2020, , .		5
22	Thermo-mechanical study of a novel rotating disk volumetric receiver. Solar Energy, 2021, 223, 302-317.	6.1	5
23	Numerical evaluation of an innovative cup layout for open volumetric solar air receivers. AIP Conference Proceedings, 2016, , .	0.4	4
24	A novel high-efficiency solar thermal power plant featuring electricity storage - Ideal for the future power grid with high shares of renewables. AIP Conference Proceedings, 2022, , .	0.4	4
25	Performance Assessment of Seawater, Wet and Dry Cooling in a 50-MW Parabolic Trough Collectors Concentrated Solar Power Plant in Kuwait. Journal of Solar Energy Engineering, Transactions of the ASME, 2022, 144, .	1.8	3
26	Detailed Modeling of Parabolic Trough Collectors for the Part Load Simulation of Solar Thermal Power Plants. , 2012, , .		2
27	Comparison of promising materials for filling thermocline tanks as thermal energy storage of a CSP plant applying air as HTF. AIP Conference Proceedings, 2022, , .	0.4	1
28	Techno-economic evaluation of the performance of an innovative rotary disk receiver concept in a CSP power plant. AIP Conference Proceedings, 2022, , .	0.4	1