
Rosa Weigand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9118280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chirp-dependent dual light emission in Na0.95Er0.05Nb0.9Ti0.1O3 perovskite. Optical Materials, 2022, 129, 112500.	3.6	1
2	Full Temporal Characterization of Few-Cycle Laser Pulses Using Commercial BaTiO3 Second-Harmonic Nanoparticles. , 2020, , .		0
3	Dual Self-Diffraction Dispersion-Scan and Its Application to the Simultaneous Measurement of Two Ultrashort Ultraviolet Pulses Produced by a Spatially Inhomogeneous Multiplate Continuum. , 2019, , .		0
4	Dual Self-Diffraction Dispersion-scan for Measuring Spatially Inhomogeneous Ultrashort Pulses. EPJ Web of Conferences, 2019, 205, 01025.	0.3	0
5	Simultaneous measurement of two ultrashort near-ultraviolet pulses produced by a multiplate continuum using dual self-diffraction dispersion-scan. Optics Letters, 2019, 44, 1015.	3.3	11
6	Nano–dispersion–scan: measurement of sub-7-fs laser pulses using second-harmonic nanoparticles. Optics Letters, 2019, 44, 4921.	3.3	10
7	Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses. Journal of Applied Physics, 2018, 124, .	2.5	8
8	Inline self-diffraction dispersion-scan of over octave-spanning pulses in the single-cycle regime. Optics Letters, 2017, 42, 3048.	3.3	21
9	Dispersion-scan Measurements of the Multiplate Continuum Process. , 2017, , .		0
10	Optical rotation of a uniformly, linearly polarized Bessel-like beam in free space. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 2061.	1.5	2
11	Fundamentals of Highly Non-Degenerate Cascaded Four-Wave Mixing. Applied Sciences (Switzerland), 2015, 5, 485-515.	2.5	8
12	Q-Switched Operation with Carbon-Based Saturable Absorbers in a Nd:YLF Laser. Applied Sciences (Switzerland), 2015, 5, 566-574.	2.5	2
13	On the Q-switched operation of Titanium:Sapphire lasers using a graphene-based saturable absorber mirror. Optics and Laser Technology, 2015, 72, 1-5.	4.6	4
14	Optical transmission properties of Pentelic and Paros marble. Applied Optics, 2015, 54, B251.	1.8	1
15	Generation of high-energy broadband femtosecond deep-ultraviolet pulses by highly nondegenerate noncollinear four-wave mixing in a thin transparent solid. Applied Physics B: Lasers and Optics, 2013, 111, 559-565.	2.2	5
16	An Nd:YLF laser Q-switched by a monolayer-graphene saturable-absorber mirror. Laser Physics, 2013, 23, 025003.	1.2	12
17	Four-wave-mixing assisted pulse shaping of femtosecond UV pulses. , 2013, , .		0

¹⁸ Broadband deep-ultraviolet femtosecond pulse generation by third-order nonlinear optical processes in thin media., 2013,,.

Rosa Weigand

#	Article	IF	CITATIONS
19	Titanium:sapphire laser oscillator delivering two-optical-cycle pulses. Optica Pura Y Aplicada, 2013, 46, 105-110.	0.1	3
20	Characterization of broadband few-cycle laser pulses with the d-scan technique. Optics Express, 2012, 20, 18732.	3.4	167
21	Generation of high-energy vacuum UV femtosecond pulses by multiple-beam cascaded four-wave mixing in a transparent solid. Applied Optics, 2011, 50, 1968.	2.1	14
22	Two-photon and two-photon-assisted slow light. Optics Letters, 2011, 36, 639.	3.3	0
23	Generation of femtosecond paraxial beams with arbitrary spatial distribution. Optics Letters, 2010, 35, 652.	3.3	21
24	Octave-spanning spectra and pulse synthesis by nondegenerate cascaded four-wave mixing. Optics Letters, 2009, 34, 2489.	3.3	23
25	Highly nondegenerate cascaded four-wave mixing of femtosecond pulses: 2D simulation and experiment. , 2009, , .		0
26	Cascaded nondegenerate four-wave-mixing technique for high-power single-cycle pulse synthesis in the visible and ultraviolet ranges. Physical Review A, 2009, 79, .	2.5	47
27	A simple experiment on slow light in ruby. American Journal of Physics, 2008, 76, 826-832.	0.7	9
28	Study of the broad-band saturable absorption of indocyanine green J-aggregates in polymeric films using 10-fs laser pulses. Applied Physics B: Lasers and Optics, 2006, 82, 303-308.	2.2	4
29	Sub- and superluminal velocity of supercontinuum pulses propagating in scattering media. Applied Physics B: Lasers and Optics, 2006, 85, 105-115.	2.2	0
30	Time-resolved study of the spectral characteristics of supercontinuum pulses propagating in scattering media. Applied Physics B: Lasers and Optics, 2003, 77, 253-257.	2.2	4
31	Optical detection of liquid surface deformations produced by high-power infrared laser pulses. Measurement Science and Technology, 2002, 13, N64-N66.	2.6	0
32	Generation of femtosecond pulses by two-photon pumping supercontinuum-seeded collinear traveling wave amplification in a dye solution. Applied Physics B: Lasers and Optics, 2001, 73, 201-203.	2.2	8
33	Correlated Temporal Fluctuations and Random Intermittency of Optical Transitions in a Single Quantum Dot. Physica Status Solidi (B): Basic Research, 2001, 224, 201-205.	1.5	4
34	Spectral diffusion of the exciton transition in a single self-organized quantum dot. Applied Physics Letters, 2000, 76, 1872-1874.	3.3	104
35	Fine Structure of Biexciton Emission in Symmetric and Asymmetric CdSe/ZnSe Single Quantum Dots. Physical Review Letters, 1999, 82, 1780-1783.	7.8	357
36	A correlation between redox potentials and photophysical behaviour of compounds with intramolecular charge transfer: application to N-substituted 1,8-naphthalimide derivatives. Chemical Physics Letters, 1998, 288, 52-58.	2.6	33

Rosa Weigand

#	Article	IF	CITATIONS
37	Saturable absorption and absorption recovery of indocyanine green J-aggregates in water. Applied Physics B: Lasers and Optics, 1998, 66, 453-459.	2.2	29
38	Single zero-dimensional excitons in CdSe/ZnSe nanostructures. Applied Physics Letters, 1998, 73, 3105-3107.	3.3	134
39	Bichromatic operation of a pulsed solid state dye laser. , 1998, 3265, 279.		0
40	The vacuum field energy in a constant volume cavity. European Journal of Physics, 1997, 18, 40-42.	0.6	4
41	Aggregation Dependent Absorption Reduction of Indocyanine Green. Journal of Physical Chemistry A, 1997, 101, 7729-7734.	2.5	45
42	Degree of aggregation of indocyanine green in aqueous solutions determined by Mie scattering. Chemical Physics, 1997, 220, 373-384.	1.9	21
43	Fluorescence spectroscopic analysis of indocyanine green J aggregates in water. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110, 75-78.	3.9	27
44	J-aggregation and disaggregation of indocyanine green in water. Chemical Physics, 1997, 220, 385-392.	1.9	67
45	pH temporal jumps and spatial inhomogeneities in acid-base dye lasers. IEEE Journal of Quantum Electronics, 1996, 32, 1858-1863.	1.9	1
46	Orientational self-bleaching for pulsed dye lasers with polarized pumping. , 1996, , .		1
47	Demonstration of the evanescent wave through absorption. American Journal of Physics, 1996, 64, 913-916.	0.7	5
48	Solvent dependence of the inhibition of intramolecular charge-transfer in N-substituted 1,8-naphthalimide derivatives as dye lasers. Journal of Luminescence, 1996, 68, 157-164.	3.1	161
49	Aminopyrido[2,3-c]-1,2,6-thiadiazine 2,2-dioxides as laser dyes. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 88, 35-38.	3.9	9
	Photobiology A. Chemistry, 1995, 66, 55-56.	0.9	
50	Study of acid-base dye laser systems. Optical and Quantum Electronics, 1995, 27, 1027-1051.	3.3	4
50 51			
	Study of acid-base dye laser systems. Optical and Quantum Electronics, 1995, 27, 1027-1051. Pyrazino[2,3-c]-1,2,6-thiadiazine 2,2-dioxides: a new family of widely tunable, acid–base dye lasers.	3.3	4
51	 Study of acid-base dye laser systems. Optical and Quantum Electronics, 1995, 27, 1027-1051. Pyrazino[2,3-c]-1,2,6-thiadiazine 2,2-dioxides: a new family of widely tunable, acid–base dye lasers. Applied Optics, 1994, 33, 944. Laser-threshold calculations for lasing of acid–base species in proton-transfer media. Applied Optics, 	3.3 2.1	4

#	Article	IF	CITATIONS
55	<title>N-substituted 1,8-naphthalimide derivatives as high-efficiency laser-dye: dependence of dye laser
emission of protonated solvent</title> . , 1991, 1397, 835.		Ο
56	Envelope mirror: a new concept of focusing reflecting optics. Applied Optics, 1990, 29, 4608.	2.1	0
57	N-substituted 1,8-naphthalimide derivatives as high efficiency laser dyes. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 48, 259-263.	3.9	36