
Brande B H Wulff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9117609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The long road to engineering durable disease resistance in wheat. Current Opinion in Biotechnology, 2022, 73, 270-275.	6.6	14
2	Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 2022, 40, 422-431.	17.5	102
3	Genome sequences of three <i>Aegilops</i> species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant Journal, 2022, 110, 179-192.	5.7	46
4	Genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq. BMC Genomics, 2022, 23, 118.	2.8	11
5	Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nature Communications, 2022, 13, 1607.	12.8	48
6	Diversifying the menu for crop powdery mildew resistance. Cell, 2022, 185, 761-763.	28.9	3
7	Discovery of Resistance Genes in Rye by Targeted Long-Read Sequencing and Association Genetics. Cells, 2022, 11, 1273.	4.1	15
8	A catalogue of resistance gene homologs and a chromosomeâ€scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnology Journal, 2022, 20, 1730-1742.	8.3	21
9	The wheat <i>Sr22</i> , <i>Sr33</i> , <i>Sr35</i> and <i>Sr45</i> genes confer resistance against stem rust in barley. Plant Biotechnology Journal, 2021, 19, 273-284.	8.3	14
10	A highly differentiated region of wheat chromosome 7AL encodes a <i>Pm1a</i> immune receptor that recognizes its corresponding <i>AvrPm1a</i> effector from <i>Blumeria graminis</i> . New Phytologist, 2021, 229, 2812-2826.	7.3	72
11	A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nature Biotechnology, 2021, 39, 561-566.	17.5	94
12	A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 2021, 7, 198-208.	9.3	62
13	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	21.4	138
14	Identification of specificityâ€defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2. Plant Journal, 2021, 106, 993-1007.	5.7	25
15	Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nature Communications, 2021, 12, 2563.	12.8	51
16	A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nature Communications, 2021, 12, 3378.	12.8	39
17	Creation and judicious application of a wheat resistance gene atlas. Molecular Plant, 2021, 14, 1053-1070.	8.3	66
18	Lr21 diversity unveils footprints of wheat evolution and its new role in broadâ€spectrum leaf rust resistance. Plant, Cell and Environment, 2021, 44, 3445-3458.	5.7	4

BRANDE B H WULFF

#	Article	IF	CITATIONS
19	High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 2021, 4, 1242.	4.4	14
20	The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nature Communications, 2021, 12, 6915.	12.8	29
21	Harnessing Wheat Fhb1 for Fusarium Resistance. Trends in Plant Science, 2020, 25, 1-3.	8.8	56
22	Mutagenesis ofÂPuccinia graminisÂf. sp.Âtritici and Selection of Gain-of-Virulence Mutants. Frontiers in Plant Science, 2020, 11, 570180.	3.6	13
23	Extensive Genetic Variation at the Sr22 Wheat Stem Rust Resistance Gene Locus in the Grasses Revealed Through Evolutionary Genomics and Functional Analyses. Molecular Plant-Microbe Interactions, 2020, 33, 1286-1298.	2.6	6
24	Discovery and characterisation of a new leaf rust resistance gene introgressed in wheat from wild wheat Aegilops peregrina. Scientific Reports, 2020, 10, 7573.	3.3	13
25	The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.	4.8	147
26	Breeding a fungal gene into wheat. Science, 2020, 368, 822-823.	12.6	8
27	Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nature Communications, 2020, 11, 1123.	12.8	52
28	LYS3 encodes a prolamin-box-binding transcription factor that controls embryo growth in barley and wheat. Journal of Cereal Science, 2020, 93, 102965.	3.7	14
29	A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .	6.0	78
30	Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. Theoretical and Applied Genetics, 2019, 132, 1473-1485.	3.6	8
31	Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37, 744-754.	17.5	577
32	Rapid Gene Cloning in Wheat. , 2019, , 65-95.		6
33	The Coiled-Coil NLR <i>Rph1</i> , Confers Leaf Rust Resistance in Barley Cultivar Sudan. Plant Physiology, 2019, 179, 1362-1372.	4.8	53
34	Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature Biotechnology, 2019, 37, 139-143.	17.5	280
35	Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology, 2018, 1, 13.	4.4	107
36	Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4, 23-29.	9.3	770

BRANDE B H WULFF

#	Article	IF	CITATIONS
37	A modified sequence capture approach allowing standard and methylation analyses of the same enriched genomic DNA sample. BMC Genomics, 2018, 19, 250.	2.8	5
38	Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018, 13, 2944-2963.	12.0	286
39	BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018, 4, 662-668.	9.3	194
40	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
41	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
42	Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biology, 2018, 19, 104.	8.8	54
43	Wheat—the cereal abandoned by GM. Science, 2018, 361, 451-452.	12.6	42
44	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	27.8	301
45	Generation of Loss-of-Function Mutants for Wheat Rust Disease Resistance Gene Cloning. Methods in Molecular Biology, 2017, 1659, 199-205.	0.9	12
46	MutRenSeq: A Method for Rapid Cloning of Plant Disease Resistance Genes. Methods in Molecular Biology, 2017, 1659, 215-229.	0.9	22
47	Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat. Annual Review of Genetics, 2017, 51, 435-454.	7.6	100
48	Isolation of Wheat Genomic DNA for Gene Mapping and Cloning. Methods in Molecular Biology, 2017, 1659, 207-213.	0.9	21
49	Rapid Gene Isolation Using MutChromSeq. Methods in Molecular Biology, 2017, 1659, 231-243.	0.9	14
50	Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theoretical and Applied Genetics, 2017, 130, 1207-1222.	3.6	45
51	Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 2016, 34, 652-655.	17.5	383
52	A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nature Biotechnology, 2016, 34, 661-665.	17.5	87
53	Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biology, 2016, 17, 221.	8.8	265
54	Chloroplast phylogeny of <i>Triticum/Aegilops</i> species is not incongruent with an ancient homoploid hybrid origin of the ancestor of the bread wheat Dâ€genome. New Phytologist, 2015, 208, 9-10.	7.3	28

BRANDE B H WULFF

#	Article	IF	CITATIONS
55	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
56	NLR-parser: rapid annotation of plant NLR complements. Bioinformatics, 2015, 31, 1665-1667.	4.1	103
57	Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Frontiers in Plant Science, 2014, 5, 692.	3.6	297
58	A chromosome-based draft sequence of the hexaploid bread wheat (<i>Triticum aestivum</i>) genome. Science, 2014, 345, 1251788.	12.6	1,479
59	Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345, 1250092.	12.6	629
60	Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section. PLoS ONE, 2013, 8, e72782.	2.5	11
61	An Allele of Arabidopsis COI1 with Hypo- and Hypermorphic Phenotypes in Plant Growth, Defence and Fertility. PLoS ONE, 2013, 8, e55115.	2.5	1
62	An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers. Plant Genome, 2011, 4, 238-249.	2.8	150
63	Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology, 2011, 14, 468-476.	7.1	82
64	Compromised stability of DNA methylation and transposon immobilization in mosaic <i>Arabidopsis</i> epigenomes. Genes and Development, 2009, 23, 939-950.	5.9	380
65	The Major Specificity-Determining Amino Acids of the Tomato Cf-9 Disease Resistance Protein Are at Hypervariable Solvent-Exposed Positions in the Central Leucine-Rich Repeats. Molecular Plant-Microbe Interactions, 2009, 22, 1203-1213.	2.6	46
66	Recognitional Specificity and Evolution in the Tomato– <i>Cladosporium fulvum</i> Pathosystem. Molecular Plant-Microbe Interactions, 2009, 22, 1191-1202.	2.6	48
67	Structure–Function Analysis of Cf-9, a Receptor-Like Protein with Extracytoplasmic Leucine-Rich Repeatsw⃞. Plant Cell, 2005, 17, 1000-1015.	6.6	112
68	Genetic Variation at the Tomato Cf-4/Cf-9 Locus Induced by EMS Mutagenesis and Intralocus Recombination. Genetics, 2004, 167, 459-470.	2.9	32
69	Gene shuffling-generated and natural variants of the tomato resistance gene Cf-9 exhibit different auto-necrosis-inducing activities in Nicotiana species. Plant Journal, 2004, 40, 942-956.	5.7	38
70	Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant Journal, 2003, 35, 305-315.	5.7	33
71	Domain Swapping and Gene Shuffling Identify Sequences Required for Induction of an Avr-Dependent Hypersensitive Response by the Tomato Cf-4 and Cf-9 Proteins. Plant Cell, 2001, 13, 255.	6.6	2
72	Domain Swapping and Gene Shuffling Identify Sequences Required for Induction of an Avr-Dependent Hypersensitive Response by the Tomato Cf-4 and Cf-9 Proteins. Plant Cell, 2001, 13, 255-272.	6.6	116

#	Article	IF	CITATIONS
73	Homologues of the Cf-9 Disease Resistance Gene (Hcr9s) Are Present at Multiple Loci on the Short Arm of Tomato Chromosome 1. Molecular Plant-Microbe Interactions, 1999, 12, 93-102.	2.6	53
74	Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato. Cell, 1997, 91, 821-832.	28.9	562