Danzhen Li

List of Publications by Year in Descending Order

 $\textbf{Source:} \ https://exaly.com/author-pdf/9117420/danzhen-li-publications-by-year.pdf$

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

99 6,023 44 76 g-index

103 6,545 8.9 5.67 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
99	Ionic liquid-assisted fabrication of metal-organic framework-derived indium oxide/bismuth oxyiodide p-n junction photocatalysts for robust photocatalysis against phenolic pollutants. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1261-1273	9.3	5
98	Photocatalytic purification of contaminated air in intensive care units by ZnSn(OH) nanoparticles. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 31770-31777	5.1	1
97	Fabrication of MOF-derived tubular InO@SnInS hybrid: Heterojunction formation and promoted photocatalytic reduction of Cr(VI) under visible light. <i>Journal of Colloid and Interface Science</i> , 2021 , 596, 278-287	9.3	11
96	CdS quantum dots-decorated InOOH: Facile synthesis and excellent photocatalytic activity under visible light. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 186-195	9.3	2
95	Synthesis of BiPO by crystallization and hydroxylation with boosted photocatalytic removal of organic pollutants in air and water. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122999	12.8	11
94	Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. <i>Chemical Engineering Journal</i> , 2020, 393, 124676	14.7	43
93	Engineering composition-tunable 3D hierarchical bismuth oxyiodides heterojunctions: Ionic liquid-assisted fabrication with strong adsorption ability and enhanced photocatalytic properties. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 250-259	21.8	33
92	Constructing photocatalyst from EBi2O3 photonic crystals for enhanced photocatalytic performance. <i>Journal of Porous Materials</i> , 2018 , 25, 677-685	2.4	6
91	New insight into an efficient visible light-driven photocatalytic organic transformation over CdS/TiO photocatalysts. <i>Photochemical and Photobiological Sciences</i> , 2018 , 17, 51-59	4.2	35
90	Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2. <i>Catalysis Science and Technology</i> , 2017 , 7, 635-640	5.5	31
89	Antimony oxide hydrate (Sb 2 O 5 BH 2 O) as a simple and high efficient photocatalyst for oxidation of benzene. <i>Applied Catalysis B: Environmental</i> , 2017 , 210, 379-385	21.8	25
88	Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. <i>Journal of Solid State Chemistry</i> , 2017 , 246, 230-236	3.3	22
87	An antimonate pyrochlore (H1.23Sr0.45SbO3.48) for photocatalytic oxidation of benzene: effective oxygen usage and excellent activity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 937-941	13	3
86	Photocatalytic decomposition of benzene enhanced by the heating effect of light: improving solar energy utilization with photothermocatalytic synergy. <i>Catalysis Science and Technology</i> , 2017 , 7, 3303-3	3515	15
85	A Visible Light Photocatalyst of Carbonate-Like Species Doped TiO2. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 333-342	3.8	11
84	Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 216-223	21.8	99
83	A facile synthesis of CdSe quantum dots-decorated anatase TiO2 with exposed {0 0 1} facets and its superior photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 838-847	21.8	62

(2014-2016)

82	Unusual photocatalytic materials with UV-VIS-NIR spectral response: deciphering the photothermocatalytic synergetic effect of Pt/LaVO4/TiO2. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14213-14221	13	39
81	Efficient light harvesting over a CdS/InO photonic crystal photocatalyst for hydrogenation of 4-nitroaniline to p-phenylenediamine. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27848-27857	3.6	17
80	Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. <i>Applied Catalysis B: Environmental</i> , 2016 , 187, 301-309	21.8	216
79	Hydroxide SrSn(OH) 6: A new photocatalyst for degradation of benzene and rhodamine B. <i>Applied Catalysis B: Environmental</i> , 2016 , 182, 533-540	21.8	26
78	Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol. <i>Journal of Hazardous Materials</i> , 2016 , 301, 362-70	12.8	76
77	Ga doped ZnO photonic crystals with enhanced photocatalytic activity and its reaction mechanism. <i>Applied Catalysis B: Environmental</i> , 2016 , 195, 29-38	21.8	46
76	One-step SDS-assisted hydrothermal synthesis and photoelectrochemical study of Ag4V2O7 nanorods decorated with Ag nanoparticles. <i>CrystEngComm</i> , 2015 , 17, 6661-6668	3.3	11
75	Role of active oxygen species in the liquid-phase photocatalytic degradation of RhB using BiVO4/TiO2 heterostructure under visible light irradiation. <i>Journal of Molecular Catalysis A</i> , 2015 , 408, 172-178		46
74	One-pot template-free synthesis of heterophase BiVO4 microspheres with enhanced photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 54882-54889	3.7	37
73	Integrating photonic bandgaps with surface plasmon resonance for the enhancement of visible-light photocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23501-23511	13	41
72	Immobilized Silver Nanoparticles on Chitosan with Special Surface State-Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 6435-43	1.3	5
71	Morphological effect on photocatalytic degradation of Rhodamine B and conversion of active species over BaSb2O6. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 323-329	21.8	25
70	Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 453-461	21.8	102
69	Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 344-351	21.8	105
68	Facile preparation of L-ascorbic acid-stabilized copper-chitosan nanocomposites with high stability and antimicrobial properties. <i>Science Bulletin</i> , 2015 , 60, 227-234	10.6	15
67	Construction of ZnO/TiO 2 photonic crystal heterostructures for enhanced photocatalytic properties. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 408-415	21.8	125
66	Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide. <i>Journal of Colloid and Interface Science</i> , 2015 , 444, 42-8	9.3	39
65	Sn3O4: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. <i>RSC Advances</i> , 2014 , 4, 1266-1269	3.7	87

64	Photocatalytic Activity of Novel Ag4V2O7 Photocatalyst Under Visible Light Irradiation. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 267-274	3.8	30
63	A large-area smooth graphene film on a TiO2 nanotube array via a one-step electrochemical process. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5187	13	8
62	Photoelectrocatalytic degradation of rhodamine B on TiO[photonic crystals. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 15299-306	3.6	47
61	A facile preparation of ZnGa2O4 photonic crystals with enhanced light absorption and photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15796-15802	13	32
60	TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 13157-66	9.5	129
59	Preparation, photocatalytic activity, and mechanism of Cd2Sb2O6.8-graphene composite. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 644-653	21.8	23
58	A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2014 , 160-161, 217-226	21.8	93
57	Synthesis and peferentially loading of nickel nanoparticle on CdS surface and its photocatalytic performance for hydrogen evolution under visible light. <i>Materials Research Bulletin</i> , 2014 , 57, 254-259	5.1	21
56	Application of long wavelength visible light (№ 650 nm) in photocatalysis with a p-CuOB-In2O3 quantum dot heterojunction photocatalyst. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9637	13	46
55	Structuring EGa2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants. <i>Environmental Science & Environmental Science & En</i>	10.3	59
54	Enhanced photosensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation. <i>Materials Research Bulletin</i> , 2013 , 48, 3025-3031	5.1	37
53	Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal. <i>RSC Advances</i> , 2013 , 3, 17021	3.7	26
52	Exploration of the active species in the photocatalytic degradation of methyl orange under UV light irradiation. <i>Journal of Molecular Catalysis A</i> , 2013 , 380, 10-17		54
51	Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21263-21273	3.8	87
50	A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. <i>Nanotechnology</i> , 2013 , 24, 375601	3.4	48
49	ZnO photonic crystals with enhanced photocatalytic activity and photostability. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2744	13	59
48	A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. <i>Applied Catalysis B: Environmental</i> , 2013 , 136-137, 94-102	21.8	146
47	A promising new photocatalyst CdSnO3BH2O for air purification under ambient condition. <i>Applied Catalysis B: Environmental</i> , 2013 , 129, 403-408	21.8	19

(2010-2012)

Microwave-Assisted Rapid Synthesis of ZnO Hexagonal Quasi-Hourglasses. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2322-2329	3.8	6
Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. <i>Journal of Solid State Chemistry</i> , 2012 , 186, 247-254	3.3	40
Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water. <i>Journal of Solid State Chemistry</i> , 2012 , 190, 135-142	3.3	36
Preparation and characterization of TIO2/SPI composite film. <i>Materials Letters</i> , 2012 , 83, 42-45	3.3	44
One-step template-free synthesis of BaSb2O6 micro-flowers and their associated photocatalytic activity. <i>CrystEngComm</i> , 2012 , 14, 8382	3.3	9
Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3552-3560	3.8	277
A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2. <i>Applied Catalysis B: Environmental</i> , 2012 , 125, 294-303	21.8	52
One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties. <i>CrystEngComm</i> , 2012 , 14, 6295	3.3	59
Highly Efficient Oxidation of Gaseous Benzene on Novel Ag3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13935-13943	3.8	104
Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5764-5772	3.8	374
High photocatalytic performance of zinc hydroxystannate toward benzene and methyl orange. <i>Applied Catalysis B: Environmental</i> , 2012 , 113-114, 134-140	21.8	42
Sensitive Marker of the Cisplatin-DNA Interaction: X-Ray Photoelectron Spectroscopy of CL. <i>Bioinorganic Chemistry and Applications</i> , 2012 , 2012, 649640	4.2	2
Sonochemical synthesis, characterization and photocatalytic properties of a novel cube-shaped CaSn(OH)6. <i>Catalysis Communications</i> , 2011 , 12, 972-975	3.2	112
Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. <i>Materials Research Bulletin</i> , 2011 , 46, 975-982	5.1	57
Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. <i>Environmental Science & amp; Technology</i> , 2011 , 45, 2987-93	10.3	143
BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. <i>Applied Catalysis B: Environmental</i> , 2011 , 104, 30-36	21.8	246
Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds. <i>Nanotechnology</i> , 2010 , 21, 355601	3.4	54
Specific Analyses of the Active Species on Zn0.28Cd0.72S and TiO2 Photocatalysts in the Degradation of Methyl Orange. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21482-21492	3.8	43
	Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. <i>Journal of Solid State Chemistry</i> , 2012, 186, 247-254 Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water. <i>Journal of Solid State Chemistry</i> , 2012, 190, 135-142 Preparation and characterization of TlO2/SPI composite film. <i>Materials Letters</i> , 2012, 83, 42-45 One-step template-free synthesis of BaSb2O6 micro-flowers and their associated photocatalytic activity. <i>CrystEngComm</i> , 2012, 14, 8382 Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. <i>Journal of Physical Chemistry</i> C, 2012, 116, 3552-3560 A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2. <i>Applied Catalysis B: Environmental</i> , 2012, 125, 294-303 One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties. <i>CrystEngComm</i> , 2012, 14, 6295 Highly Efficient Oxidation of Gaseous Benzene on Novel Ag3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2012, 116, 13935-13943 Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite. <i>Journal of Physical Chemistry C</i> , 2012, 116, 5764-5772 High photocatalytic performance of zinc hydroxystannate toward benzene and methyl orange. <i>Applied Catalysis B: Environmental</i> , 2012, 113-114, 134-140 Sensitive Marker of the Cisplatin-DNA Interaction: X-Ray Photocatalytic properties of a novel cube-shaped Casn(OH)6. <i>Catalysis Communications</i> , 2011, 12, 972-975 Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. <i>Materials Research Bulletin</i> , 2011, 46, 975-982 Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. <i>Environmental Science & amp; Technolog</i>	Microwave-assisted hydrothermal synthesis of marigold-like Znln254 microspheres and their visible light photocatalytic activity. Journal of Solid State Chemistry, 2012, 186, 247-254 Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water. Journal of Solid State Chemistry, 2012, 190, 135-142 Preparation and characterization of TIO2/SPI composite film. Materials Letters, 2012, 83, 42-45 One-step template-free synthesis of BaSb2O6 micro-flowers and their associated photocatalytic activity. CrystEngComm, 2012, 14, 8382 Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. Journal of Physical Chemistry C, 2012, 116, 3552-3560 A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2. Applied Catalysis B: Environmental, 2012, 125, 294-303 One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties. CrystEngComm, 2012, 14, 6295 Highly Efficient Oxidation of Gaseous Benzene on Novel Ag3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation. Journal of Physical Chemistry C, 2012, 116, 5764-5772 High photocatalytic performance of zinc hydroxystannate toward benzene and methyl orange. Applied Catalysis B: Environmental, 2012, 113-114, 134-140 Sensitive Marker of the Cisplatin-DNA Interaction: X-Ray Photocaletron Spectroscopy of CL. Bioinarganic Chemistry and Applications, 2012, 2012, 649640 Sonochemical synthesis, characterization and photocatalytic properties of a novel cube-shaped CaSn(OH)6. Catalysis Communications, 2011, 12, 972-975 Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. Materials Research Bulletin, 2011, 46, 975-982 Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. Materials Research Bulletin, 2011, 46, 975-982 Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activi

28	Microwave Synthesis of ZnxCd1⊠S Nanorods and Their Photocatalytic Activity under Visible Light. Journal of Physical Chemistry C, 2010 , 114, 2154-2159	3.8	150
27	Microwave hydrothermal synthesis and photocatalytic activity of AgIn5S8 for the degradation of dye. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2466-2474	3.3	35
26	Photocatalytic Oxidation of Benzene on Nano-crystalline Mg-Al-HT/TiO2 Heterocompounds. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 1037-1043	11.3	1
25	Characterization and properties of Eu3+-doped CdWO4 prepared by a hydrothermal method. <i>Research on Chemical Intermediates</i> , 2009 , 35, 675-683	2.8	19
24	Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry. <i>Journal of Chromatography A</i> , 2009 , 1216, 3217-22	4.5	15
23	Synthesis and Photocatalytic Activity of Calcium Antimony Oxide Hydroxide for the Degradation of Dyes in Water. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13825-13831	3.8	61
22	Photocatalyst Cd2Sb2O6.8 with High Photocatalytic Activity toward Benzene and Dyes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14916-14921	3.8	26
21	Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4433-4440	3.8	180
20	Efficient Photocatalytic Activity of PZT/TiO2 Heterojunction under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14264-14269	3.8	49
19	Microwave hydrothermal synthesis of calcium antimony oxide hydroxide with high photocatalytic activity toward benzene. <i>Environmental Science & Environmental </i>	10.3	38
18	Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. <i>Environmental Science & Environmental Science </i>	10.3	246
17	A New Application of Nanocrystal In2S3 in Efficient Degradation of Organic Pollutants under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5254-5262	3.8	150
16	New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18076-18081	3.8	124
15	High-efficient Degradation of Dyes by ZnxCd1\(\mathbb{R}\)S Solid Solutions under Visible Light Irradiation. Journal of Physical Chemistry C, 2008 , 112, 14943-14947	3.8	96
14	Low-temperature and template-free synthesis of ZnIn2S4 microspheres. <i>Inorganic Chemistry</i> , 2008 , 47, 9766-72	5.1	136
13	A New Photocatalyst CdWO4 Prepared with a Hydrothermal Method. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17351-17356	3.8	79
12	CO Preferential oxidation promoted by UV irradiation in the presence of H2 over Au/TiO2. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 3256-62	3.6	16
11	A new route for degradation of volatile organic compounds under visible light: using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 atmosphere. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 2130-5	10.3	79

LIST OF PUBLICATIONS

10	InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 193, 213-221	4.7	110
9	Indium hydroxide: A highly active and low deactivated catalyst for photoinduced oxidation of benzene. <i>Comptes Rendus Chimie</i> , 2008 , 11, 101-106	2.7	54
8	New Synthesis of Single-Crystalline InVO4 Nanorods Using an Ionic Liquid. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3698-3703	3.8	13
7	Study of relationship between surface transient photoconductivity and liquid-phase photocatalytic activity of titanium dioxide. <i>Materials Chemistry and Physics</i> , 2007 , 102, 53-59	4.4	20
6	New synthesis of excellent visible-light TiO2Nx photocatalyst using a very simple method. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 2630-2634	3.3	52
5	Unprecedented application of lead zirconate titanate in degradation of Rhodamine B under visible light irradiation. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1116		20
4	New synthesis of a porous Si/TiO2 photocatalyst: testing its efficiency and stability under visible light irradiation. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 653-5	4.2	21
3	Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2. <i>New Journal of Chemistry</i> , 2005 , 29, 1514	3.6	32
2	A primary study on the photocatalytic properties of HZSM-5 zeolite. <i>Catalysis Today</i> , 2004 , 93-95, 851-8	8 56 3	28
1	H2-O2 atmosphere increases the activity of Pt/TiO2 for benzene photocatalytic oxidation by two orders of magnitude. <i>Chemical Communications</i> , 2004 , 2304-5	5.8	36