Danzhen Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/9117420/danzhen-li-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

99 6,023 44 76 g-index

103 6,545 8.9 5.67 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
99	Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5764-5772	3.8	374
98	Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3552-3560	3.8	277
97	BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. <i>Applied Catalysis B: Environmental</i> , 2011 , 104, 30-36	21.8	246
96	Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. <i>Environmental Science & Environmental Science </i>	10.3	246
95	Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. <i>Applied Catalysis B: Environmental</i> , 2016 , 187, 301-309	21.8	216
94	Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation. Journal of Physical Chemistry C, 2009 , 113, 4433-4440	3.8	180
93	Microwave Synthesis of ZnxCd1⊠S Nanorods and Their Photocatalytic Activity under Visible Light. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2154-2159	3.8	150
92	A New Application of Nanocrystal In2S3 in Efficient Degradation of Organic Pollutants under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5254-5262	3.8	150
91	A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. <i>Applied Catalysis B: Environmental</i> , 2013 , 136-137, 94-102	21.8	146
90	Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	143
89	Low-temperature and template-free synthesis of ZnIn2S4 microspheres. <i>Inorganic Chemistry</i> , 2008 , 47, 9766-72	5.1	136
88	TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 13157-66	9.5	129
87	Construction of ZnO/TiO 2 photonic crystal heterostructures for enhanced photocatalytic properties. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 408-415	21.8	125
86	New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18076-18081	3.8	124
85	Sonochemical synthesis, characterization and photocatalytic properties of a novel cube-shaped CaSn(OH)6. <i>Catalysis Communications</i> , 2011 , 12, 972-975	3.2	112
84	InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 193, 213-221	4.7	110
83	Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 344-351	21.8	105

(2010-2012)

82	Photocatalysts under Visible and Simulated Solar Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13935-13943	3.8	104
81	Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 453-461	21.8	102
80	Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 216-223	21.8	99
79	High-efficient Degradation of Dyes by ZnxCd1⊠S Solid Solutions under Visible Light Irradiation. Journal of Physical Chemistry C, 2008 , 112, 14943-14947	3.8	96
78	A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2014 , 160-161, 217-226	21.8	93
77	Sn3O4: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. <i>RSC Advances</i> , 2014 , 4, 1266-1269	3.7	87
76	Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21263-21273	3.8	87
75	A New Photocatalyst CdWO4 Prepared with a Hydrothermal Method. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17351-17356	3.8	79
74	A new route for degradation of volatile organic compounds under visible light: using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 atmosphere. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 2130-5	10.3	79
73	Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol. <i>Journal of Hazardous Materials</i> , 2016 , 301, 362-70	12.8	76
72	A facile synthesis of CdSe quantum dots-decorated anatase TiO2 with exposed {0 0 1} facets and its superior photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 838-847	21.8	62
71	Synthesis and Photocatalytic Activity of Calcium Antimony Oxide Hydroxide for the Degradation of Dyes in Water. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13825-13831	3.8	61
70	Structuring EGa2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants. <i>Environmental Science & Environmental Science & En</i>	10.3	59
69	One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties. <i>CrystEngComm</i> , 2012 , 14, 6295	3.3	59
68	ZnO photonic crystals with enhanced photocatalytic activity and photostability. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2744	13	59
67	Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. <i>Materials Research Bulletin</i> , 2011 , 46, 975-982	5.1	57
66	Exploration of the active species in the photocatalytic degradation of methyl orange under UV light irradiation. <i>Journal of Molecular Catalysis A</i> , 2013 , 380, 10-17		54
65	Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds. <i>Nanotechnology</i> , 2010 , 21, 355601	3.4	54

64	Indium hydroxide: A highly active and low deactivated catalyst for photoinduced oxidation of benzene. <i>Comptes Rendus Chimie</i> , 2008 , 11, 101-106	2.7	54
63	A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2. <i>Applied Catalysis B: Environmental</i> , 2012 , 125, 294-303	21.8	52
62	New synthesis of excellent visible-light TiO2Nx photocatalyst using a very simple method. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 2630-2634	3.3	52
61	Efficient Photocatalytic Activity of PZT/TiO2 Heterojunction under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14264-14269	3.8	49
60	A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. <i>Nanotechnology</i> , 2013 , 24, 375601	3.4	48
59	Photoelectrocatalytic degradation of rhodamine B on TiOlphotonic crystals. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 15299-306	3.6	47
58	Role of active oxygen species in the liquid-phase photocatalytic degradation of RhB using BiVO4/TiO2 heterostructure under visible light irradiation. <i>Journal of Molecular Catalysis A</i> , 2015 , 408, 172-178		46
57	Application of long wavelength visible light (I» 650 nm) in photocatalysis with a p-CuOII-In2O3 quantum dot heterojunction photocatalyst. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9637	13	46
56	Ga doped ZnO photonic crystals with enhanced photocatalytic activity and its reaction mechanism. <i>Applied Catalysis B: Environmental</i> , 2016 , 195, 29-38	21.8	46
55	Preparation and characterization of TIO2/SPI composite film. <i>Materials Letters</i> , 2012 , 83, 42-45	3.3	44
54	Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. <i>Chemical Engineering Journal</i> , 2020 , 393, 124676	14.7	43
53	Specific Analyses of the Active Species on Zn0.28Cd0.72S and TiO2 Photocatalysts in the Degradation of Methyl Orange. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21482-21492	3.8	43
52	High photocatalytic performance of zinc hydroxystannate toward benzene and methyl orange. <i>Applied Catalysis B: Environmental</i> , 2012 , 113-114, 134-140	21.8	42
51	Integrating photonic bandgaps with surface plasmon resonance for the enhancement of visible-light photocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23501-23511	13	41
50	Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. <i>Journal of Solid State Chemistry</i> , 2012 , 186, 247-254	3.3	40
49	Unusual photocatalytic materials with UV-VIS-NIR spectral response: deciphering the photothermocatalytic synergetic effect of Pt/LaVO4/TiO2. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14213-14221	13	39
48	Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide. <i>Journal of Colloid and Interface Science</i> , 2015 , 444, 42-8	9.3	39
47	Microwave hydrothermal synthesis of calcium antimony oxide hydroxide with high photocatalytic activity toward benzene. <i>Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental </i>	10.3	38

(2014-2015)

46	One-pot template-free synthesis of heterophase BiVO4 microspheres with enhanced photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 54882-54889	3.7	37
45	Enhanced photosensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation. <i>Materials Research Bulletin</i> , 2013 , 48, 3025-3031	5.1	37
44	Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water. <i>Journal of Solid State Chemistry</i> , 2012 , 190, 135-142	3.3	36
43	H2-O2 atmosphere increases the activity of Pt/TiO2 for benzene photocatalytic oxidation by two orders of magnitude. <i>Chemical Communications</i> , 2004 , 2304-5	5.8	36
42	Microwave hydrothermal synthesis and photocatalytic activity of AgIn5S8 for the degradation of dye. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2466-2474	3.3	35
41	New insight into an efficient visible light-driven photocatalytic organic transformation over CdS/TiO photocatalysts. <i>Photochemical and Photobiological Sciences</i> , 2018 , 17, 51-59	4.2	35
40	Engineering composition-tunable 3D hierarchical bismuth oxyiodides heterojunctions: Ionic liquid-assisted fabrication with strong adsorption ability and enhanced photocatalytic properties. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 250-259	21.8	33
39	A facile preparation of ZnGa2O4 photonic crystals with enhanced light absorption and photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15796-15802	13	32
38	Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2. <i>New Journal of Chemistry</i> , 2005 , 29, 1514	3.6	32
37	Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2. <i>Catalysis Science and Technology</i> , 2017 , 7, 635-640	5.5	31
36	Photocatalytic Activity of Novel Ag4V2O7 Photocatalyst Under Visible Light Irradiation. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 267-274	3.8	30
35	A primary study on the photocatalytic properties of HZSM-5 zeolite. <i>Catalysis Today</i> , 2004 , 93-95, 851-8	5<u>6</u>3	28
34	Hydroxide SrSn(OH) 6 : A new photocatalyst for degradation of benzene and rhodamine B. <i>Applied Catalysis B: Environmental</i> , 2016 , 182, 533-540	21.8	26
33	Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal. <i>RSC Advances</i> , 2013 , 3, 17021	3.7	26
32	Photocatalyst Cd2Sb2O6.8 with High Photocatalytic Activity toward Benzene and Dyes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14916-14921	3.8	26
31	Antimony oxide hydrate (Sb 2 O 5 BH 2 O) as a simple and high efficient photocatalyst for oxidation of benzene. <i>Applied Catalysis B: Environmental</i> , 2017 , 210, 379-385	21.8	25
30	Morphological effect on photocatalytic degradation of Rhodamine B and conversion of active species over BaSb2O6. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 323-329	21.8	25
29	Preparation, photocatalytic activity, and mechanism of Cd2Sb2O6.8-graphene composite. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 644-653	21.8	23

28	Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. <i>Journal of Solid State Chemistry</i> , 2017 , 246, 230-236	3.3	22
27	Synthesis and peferentially loading of nickel nanoparticle on CdS surface and its photocatalytic performance for hydrogen evolution under visible light. <i>Materials Research Bulletin</i> , 2014 , 57, 254-259	5.1	21
26	New synthesis of a porous Si/TiO2 photocatalyst: testing its efficiency and stability under visible light irradiation. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 653-5	4.2	21
25	Study of relationship between surface transient photoconductivity and liquid-phase photocatalytic activity of titanium dioxide. <i>Materials Chemistry and Physics</i> , 2007 , 102, 53-59	4.4	20
24	Unprecedented application of lead zirconate titanate in degradation of Rhodamine B under visible light irradiation. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1116		20
23	A promising new photocatalyst CdSnO3BH2O for air purification under ambient condition. <i>Applied Catalysis B: Environmental</i> , 2013 , 129, 403-408	21.8	19
22	Characterization and properties of Eu3+-doped CdWO4 prepared by a hydrothermal method. <i>Research on Chemical Intermediates</i> , 2009 , 35, 675-683	2.8	19
21	Efficient light harvesting over a CdS/InO photonic crystal photocatalyst for hydrogenation of 4-nitroaniline to p-phenylenediamine. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27848-27857	3.6	17
20	CO Preferential oxidation promoted by UV irradiation in the presence of H2 over Au/TiO2. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 3256-62	3.6	16
19	Photocatalytic decomposition of benzene enhanced by the heating effect of light: improving solar energy utilization with photothermocatalytic synergy. <i>Catalysis Science and Technology</i> , 2017 , 7, 3303-3	351-5	15
18	Facile preparation of L-ascorbic acid-stabilized copper-chitosan nanocomposites with high stability and antimicrobial properties. <i>Science Bulletin</i> , 2015 , 60, 227-234	10.6	15
17	Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry. <i>Journal of Chromatography A</i> , 2009 , 1216, 3217-22	4.5	15
16	New Synthesis of Single-Crystalline InVO4 Nanorods Using an Ionic Liquid. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3698-3703	3.8	13
15	One-step SDS-assisted hydrothermal synthesis and photoelectrochemical study of Ag4V2O7 nanorods decorated with Ag nanoparticles. <i>CrystEngComm</i> , 2015 , 17, 6661-6668	3.3	11
14	Synthesis of BiPO by crystallization and hydroxylation with boosted photocatalytic removal of organic pollutants in air and water. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122999	12.8	11
13	A Visible Light Photocatalyst of Carbonate-Like Species Doped TiO2. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 333-342	3.8	11
12	Fabrication of MOF-derived tubular InO@SnInS hybrid: Heterojunction formation and promoted photocatalytic reduction of Cr(VI) under visible light. <i>Journal of Colloid and Interface Science</i> , 2021 , 596, 278-287	9.3	11
11	One-step template-free synthesis of BaSb2O6 micro-flowers and their associated photocatalytic activity. <i>CrystEngComm</i> , 2012 , 14, 8382	3.3	9

LIST OF PUBLICATIONS

10	A large-area smooth graphene film on a TiO2 nanotube array via a one-step electrochemical process. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5187	13	8	
9	Constructing photocatalyst from EBi2O3 photonic crystals for enhanced photocatalytic performance. <i>Journal of Porous Materials</i> , 2018 , 25, 677-685	2.4	6	
8	Microwave-Assisted Rapid Synthesis of ZnO Hexagonal Quasi-Hourglasses. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2322-2329	3.8	6	
7	Immobilized Silver Nanoparticles on Chitosan with Special Surface State-Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 6435-43	1.3	5	
6	Ionic liquid-assisted fabrication of metal-organic framework-derived indium oxide/bismuth oxyiodide p-n junction photocatalysts for robust photocatalysis against phenolic pollutants. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1261-1273	9.3	5	
5	An antimonate pyrochlore (H1.23Sr0.45SbO3.48) for photocatalytic oxidation of benzene: effective oxygen usage and excellent activity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 937-941	13	3	
4	Sensitive Marker of the Cisplatin-DNA Interaction: X-Ray Photoelectron Spectroscopy of CL. <i>Bioinorganic Chemistry and Applications</i> , 2012 , 2012, 649640	4.2	2	
3	CdS quantum dots-decorated InOOH: Facile synthesis and excellent photocatalytic activity under visible light. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 186-195	9.3	2	
2	Photocatalytic Oxidation of Benzene on Nano-crystalline Mg-Al-HT/TiO2 Heterocompounds. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 1037-1043	11.3	1	
1	Photocatalytic purification of contaminated air in intensive care units by ZnSn(OH) nanoparticles. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 31770-31777	5.1	1	