

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9116944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective tandem catalysis for the synthesis of 5-hydroxymethylfurfural from glucose over in-situ phosphated titania catalysts: Insights into structure, bi-functionality and performance in flow microreactors. Applied Catalysis B: Environmental, 2022, 301, 120800.	10.8	41
2	Efficient synthesis of furfural from xylose over <scp>HCl</scp> catalyst in slug flow microreactors promoted by <scp>NaCl</scp> addition. AICHE Journal, 2022, 68, .	1.8	11
3	Gas–Liquid Slug Flow Studies in Microreactors: Effect of Nanoparticle Addition on Flow Pattern and Pressure Drop. Frontiers in Chemical Engineering, 2022, 3, .	1.3	4
4	Hydrodynamics and Mass Transfer Characteristics for Extractive Desulfurization of Diesel Using Highly Viscous Ionic Liquids in Microchannels: The Effect of the Phase Ratio and Temperature. Industrial & Engineering Chemistry Research, 2022, 61, 5351-5362.	1.8	6
5	Continuous Solid Particle Flow in Microreactors for Efficient Chemical Conversion. Industrial & Engineering Chemistry Research, 2022, 61, 6269-6291.	1.8	15
6	Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. Chemical Engineering and Processing: Process Intensification, 2022, 177, 109002.	1.8	14
7	The rotor-stator type hydrodynamic cavitation reactor approach for enhanced biodiesel fuel production. Fuel, 2021, 283, 118821.	3.4	33
8	Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors. Chemical Engineering Journal, 2021, 406, 126885.	6.6	27
9	Experimental study and mass transfer modelling for extractive desulfurization of diesel with ionic liquid in microreactors. Chemical Engineering Journal, 2021, 413, 127419.	6.6	31
10	Mass transfer and reaction characteristics of homogeneously catalyzed aerobic oxidation of 5-hydroxymethylfurfural in slug flow microreactors. Chemical Engineering Journal, 2021, 413, 127552.	6.6	19
11	Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 2021, 409, 128182.	6.6	72
12	Efficient Conversion of Glucose to 5-Hydroxymethylfurfural over a Sn-Modified SAPO-34 Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 5838-5851.	1.8	24
13	Catalytic methane combustion in plate-type microreactors with different channel configurations: An experimental study. Chemical Engineering Science, 2021, 236, 116517.	1.9	9
14	Biodiesel fuel purification in a continuous centrifugal contactor separator: An environmental-friendly approach. Sustainable Energy Technologies and Assessments, 2021, 47, 101511.	1.7	4
15	Optimization of operational and design parameters of a Simultaneous Mixer-Separator for enhanced continuous biodiesel production. Chemical Product and Process Modeling, 2021, 16, 155-167.	0.5	1
16	Preparation of Pt/Î ³ -Al2O3 catalyst coating in microreactors for catalytic methane combustion. Chemical Engineering Journal, 2020, 380, 122424.	6.6	37
17	Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chemical Engineering Journal, 2020, 381, 122754.	6.6	121
18	Hydrodynamics and local mass transfer characterization under gas–liquid–liquid slug flow in a rectangular microchannel. AICHE Journal, 2020, 66, e16805.	1.8	15

Jun Yue

#	Article	IF	CITATIONS
19	A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Reviews, 2020, 119, 109589.	8.2	161
20	Highly Efficient Conversion of Xylose to Furfural in a Water–MIBK System Catalyzed by Magnetic Carbon-Based Solid Acid. Industrial & Engineering Chemistry Research, 2020, 59, 17046-17056.	1.8	38
21	Aerobic oxidation of benzyl alcohol in a slug flow microreactor: Influence of liquid film wetting on mass transfer. AICHE Journal, 2020, 66, e17005.	1.8	11
22	Sugar dehydration to 5-hydroxymethylfurfural in mixtures of water/[Bmim]Cl catalyzed by iron sulfate. New Journal of Chemistry, 2020, 44, 16877-16890.	1.4	8
23	Experimental and modeling studies on the Ru/C catalyzed levulinic acid hydrogenation to Î ³ -valerolactone in packed bed microreactors. Chemical Engineering Journal, 2020, 399, 125750.	6.6	30
24	Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. Journal of Flow Chemistry, 2020, 10, 103-121.	1.2	39
25	Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. Industrial & Engineering Chemistry Research, 2019, 58, 15432-15444.	1.8	18
26	High‥ield 5â€Hydroxymethylfurfural Synthesis from Crude Sugar Beet Juice in a Biphasic Microreactor. ChemSusChem, 2019, 12, 4304-4312.	3.6	28
27	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	1.8	67
28	Efficient Depolymerization of Lignin to Biobased Chemicals Using a Two-Step Approach Involving Ozonation in a Continuous Flow Microreactor Followed by Catalytic Hydrotreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 18384-18394.	3.2	20
29	An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chemistry, 2019, 21, 1292-1304.	4.6	77
30	Effect of a potassium promoter on the Fischer–Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. Catalysis Science and Technology, 2019, 9, 2728-2741.	2.1	98
31	Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catalysis Today, 2018, 308, 3-19.	2.2	131
32	Bubble splitting under gas–liquid–liquid threeâ€phase flow in a double Tâ€junction microchannel. AICHE Journal, 2018, 64, 376-388.	1.8	19
33	Optimization of Biodiesel Production over Chicken Eggshell-Derived CaO Catalyst in a Continuous Centrifugal Contactor Separator. Industrial & Engineering Chemistry Research, 2018, 57, 12742-12755.	1.8	45
34	Modelling studies of enantioselective extraction of an amino acid derivative in slug flow capillary microreactors. Chemical Engineering Journal, 2018, 354, 378-392.	6.6	9
35	Numerical modeling of a compositional flow for chemical EOR and its stability analysis. Applied Mathematical Modelling, 2017, 47, 141-159.	2.2	19
36	Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chemistry, 2017, 19, 4334-4343.	4.6	14

Jun Yue

#	Article	IF	CITATIONS
37	Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors. Industrial & Engineering Chemistry Research, 2016, 55, 4691-4702.	1.8	76
38	Numerical simulation of Taylor bubble formation in a microchannel with a converging shape mixing junction. Chemical Engineering Journal, 2015, 262, 616-627.	6.6	47
39	Gas–liquid–liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas–liquid/liquid–liquid flows. Lab on A Chip, 2014, 14, 1632.	3.1	61
40	Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow. Lab on A Chip, 2013, 13, 4855.	3.1	73
41	Formation characteristics of Taylor bubbles in a microchannel with a converging shape mixing junction. Chemical Engineering Journal, 2013, 223, 99-109.	6.6	33
42	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 4: Influence of Gasâ€Phase Mass Transfer during a Secondâ€Order Reaction in a Liquid in Laminar Flow. Chemical Engineering and Technology, 2013, 36, 611-626.	0.9	1
43	Integration of Microreactors with Spectroscopic Detection for Online Reaction Monitoring and Catalyst Characterization. Industrial & Engineering Chemistry Research, 2012, 51, 14583-14609.	1.8	121
44	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 1: Instantaneous Reaction in a Liquid in Plug Flow. Chemical Engineering and Technology, 2012, 35, 679-692.	0.9	11
45	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 2: First―and Secondâ€Order Reactions in a Liquid in Plug Flow. Chemical Engineering and Technology, 2012, 35, 859-869.	0.9	6
46	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 3: Instantaneous and Secondâ€Order Reactions in a Liquid in Laminar Flow. Chemical Engineering and Technology, 2012, 35, 1473-1485.	0.9	2
47	Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. AICHE Journal, 2010, 56, 298-317.	1.8	53
48	Flow pattern and break-up of liquid film in single-channel falling film microreactors. Chemical Engineering Journal, 2010, 163, 126-132.	6.6	19
49	Hydrodynamics and mass transfer of gas–liquid flow in a falling film microreactor. AICHE Journal, 2009, 55, 1110-1120.	1.8	67
50	An experimental study of air–water Taylor flow and mass transfer inside square microchannels. Chemical Engineering Science, 2009, 64, 3697-3708.	1.9	175
51	Influence of precursors on the catalytic activity of alumina for bio-ethanol dehydration in microchannel reactors. International Journal of Global Warming, 2009, 1, 456.	0.2	1
52	An experimental investigation of gas–liquid two-phase flow in single microchannel contactors. Chemical Engineering Science, 2008, 63, 4189-4202.	1.9	158
53	Gas-Liquid Microreaction Technology: Recent Developments and Future Challenges. Chinese Journal of Chemical Engineering, 2008, 16, 663-669.	1.7	89
54	Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel. Chemical Engineering Science, 2007, 62, 2096-2108.	1.9	435

Jun Yue

#	Article	IF	CITATIONS
55	Pressure drops of single and two-phase flows through T-type microchannel mixers. Chemical Engineering Journal, 2004, 102, 11-24.	6.6	54
56	Preparation of reducing sugars from corncob by solid acid catalytic pretreatment combined with in situ enzymatic hydrolysis. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0