Zhiqiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9116808/publications.pdf

Version: 2024-02-01

516710 552781 40 866 16 26 citations g-index h-index papers 40 40 40 925 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low-temperature stress affects reactive oxygen species, osmotic adjustment substances, and antioxidants in rice (Oryza sativa L.) at the reproductive stage. Scientific Reports, 2022, 12, 6224.	3.3	15
2	The Class III peroxidase gene <i>OsPrx30</i> , transcriptionally modulated by the ATâ€hook protein OsATH1, mediates rice bacterial blightâ€induced ROS accumulation. Journal of Integrative Plant Biology, 2021, 63, 393-408.	8.5	34
3	Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. Crop Journal, 2021, 9, 360-371.	5.2	14
4	Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice. Rice, 2021, 14, 1.	4.0	48
5	Identification and candidate gene screening of qCIR9.1, a novel QTL associated with anther culturability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2021, 134, 2097-2111.	3.6	6
6	Genome-wide association study reveals early seedling vigour-associated quantitative trait loci in indica rice. Euphytica, 2021 , 217 , 1 .	1.2	1
7	Time Course Analysis of Genome-Wide Identification of Mutations Induced by and Genes Expressed in Response to Carbon Ion Beam Irradiation in Rice (Oryza sativa L.). Genes, 2021, 12, 1391.	2.4	5
8	Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice. Plant Science, 2020, 301, 110669.	3.6	11
9	Global analysis of differentially expressed genes between two Japonica rice varieties induced by low temperature during the booting stage by RNA-Seq. Royal Society Open Science, 2020, 7, 192243.	2.4	12
10	Dynamic transcriptome and metabolome analyses of two types of rice during the seed germination and young seedling growth stages. BMC Genomics, 2020, 21, 603.	2.8	20
11	QTL mapping and haplotype analysis revealed candidate genes for grain thickness in rice (Oryza sativa) Tj ETQq1	. 1 0.7843 2.1	14 rgBT /Over
12	Identification of QTLs involved in cold tolerance during the germination and bud stages of rice (<i>Oryza sativa</i> L.) via a high-density genetic map. Breeding Science, 2020, 70, 292-302.	1.9	17
13	A single nucleotide mutation in the fourth exon of RBH1 is responsible for brown hull phenotype in rice. Molecular Breeding, 2020, 40, 1 .	2.1	2
14	Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq. Royal Society Open Science, 2020, 7, 201081.	2.4	15
15	Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Science, 2019, 289, 110282.	3.6	75
16	Quantitative Trait Locus Analysis of Seed Germination and Early Seedling Growth in Rice. Frontiers in Plant Science, 2019, 10, 1582.	3.6	15
17	Genome-Wide Comparisons of Mutations Induced by Carbon-Ion Beam and Gamma-Rays Irradiation in Rice via Resequencing Multiple Mutants. Frontiers in Plant Science, 2019, 10, 1514.	3.6	27
18	Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS. Rice, 2019, 12, 78.	4.0	19

#	Article	IF	CITATIONS
19	Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza) Tj ETQq1	1 _{.0.} 78431	4 rgBT /Ove
20	Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice, 2019, 12, 21.	4.0	60
21	Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics, 2019, 20, 355.	2.8	39
22	Comparative Transcriptome Profile Analysis of Anther Development in Reproductive Stage of Rice in Cold Region Under Cold Stress. Plant Molecular Biology Reporter, 2019, 37, 129-145.	1.8	12
23	Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding. Euphytica, 2019, 215, 1.	1.2	14
24	Characterization and Fine Mapping of a Leaf Wilt Mutant, <i>m3</i> , Induced by Heavy Ion Irradiation of Rice. Crop Science, 2019, 59, 2679-2688.	1.8	5
25	Identification of Magnaporthe oryzae-elicited rice novel miRNAs and their targets by miRNA and degradome sequencing. European Journal of Plant Pathology, 2018, 151, 629-647.	1.7	10
26	Pasting properties, grain-filling characteristics and allelic variation linked to the grain quality in diverse rice. Euphytica, 2017, 213, 1.	1.2	6
27	Markerâ€assisted selection for rice blast resistance genes <i>Pi2</i> and <i>Pi9</i> through highâ€resolution melting of a geneâ€targeted amplicon. Plant Breeding, 2017, 136, 67-73.	1.9	20
28	Analysis of a major rice blast resistance gene in the rice restorer line Hanghui 1179. Euphytica, 2017, 213, 1.	1.2	3
29	NBS-LRR Protein Pik-H4 Interacts with OsBIHD1 to Balance Rice Blast Resistance and Growth by Coordinating Ethylene-Brassinosteroid Pathway. Frontiers in Plant Science, 2017, 8, 127.	3.6	32
30	CONSTANS-Like 9 (OsCOL9) Interacts with Receptor for Activated C-Kinase 1(OsRACK1) to Regulate Blast Resistance through Salicylic Acid and Ethylene Signaling Pathways. PLoS ONE, 2016, 11, e0166249.	2.5	30
31	Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Molecular Genetics and Genomics, 2016, 291, 1927-1940.	2.1	39
32	CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Biochemical and Biophysical Research Communications, 2016, 479, 173-178.	2.1	40
33	High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. Rice, 2016, 9, 48.	4.0	56
34	A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice. Molecular Breeding, 2016, 36, 1.	2.1	6
35	Chromosome mapping, molecular cloning and expression analysis of a novel gene response for leaf width in rice. Biochemical and Biophysical Research Communications, 2016, 480, 394-401.	2.1	10
36	4-Coumarate-CoA Ligase-Like Gene OsAAE3 Negatively Mediates the Rice Blast Resistance, Floret Development and Lignin Biosynthesis. Frontiers in Plant Science, 2016, 7, 2041.	3.6	41

ZHIQIANG CHEN

#	Article	IF	CITATION
37	Identification of three major R genes responsible for broad-spectrum blast resistance in an indica rice accession. Molecular Breeding, 2015, 35, 1.	2.1	11
38	Stacking of five favorable alleles for amylase content, fragrance and disease resistance into elite lines in rice (Oryza sativa) by using four HRM-based markers and a linked gel-based marker. Molecular Breeding, 2014, 34, 805-815.	2.1	9
39	Identification and fine mapping of a major R gene to Magnaporthe oryzae in a broad-spectrum resistant germplasm in rice. Molecular Breeding, 2012, 30, 1715-1726.	2.1	10
40	Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Molecular Breeding, 2011, 28, 303-312.	2.1	27