Alex Chi-Kin Yip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9116796/publications.pdf

Version: 2024-02-01

92 papers

3,879 citations

36 h-index 59 g-index

95 all docs 95 docs citations 95 times ranked 5044 citing authors

#	Article	IF	Citations
1	Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 2019, 12, 955-972.	5.8	430
2	Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chemical Engineering Journal, 2020, 401, 126136.	6.6	158
3	Environmental impacts of nanomaterials. Journal of Environmental Management, 2018, 225, 261-271.	3.8	155
4	Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support. Chemical Engineering Journal, 2015, 278, 293-300.	6.6	142
5	Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology, 2019, 30, 467-484.	2.0	127
6	Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. Bioresource Technology, 2017, 237, 222-230.	4.8	121
7	Thermal Structural Transitions and Carbon Dioxide Adsorption Properties of Zeolitic Imidazolate Framework-7 (ZIF-7). Journal of the American Chemical Society, 2014, 136, 7961-7971.	6.6	102
8	Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects. Chemical Engineering Journal, 2017, 327, 328-335.	6.6	99
9	Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. Bioresource Technology, 2016, 219, 338-347.	4.8	98
10	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Science of the Total Environment, 2019, 664, 312-321.	3.9	92
11	Propylene carbonate and Î ³ -valerolactone as green solvents enhance Sn(<scp>iv</scp>)-catalysed hydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074.	4.6	85
12	Chemical-Vapor-Deposited Copper on Acid-Activated Bentonite Clay as an Applicable Heterogeneous Catalyst for the Photo-Fenton-like Oxidation of Textile Organic Pollutants. Industrial & Description o	1.8	69
13	Copper/MCM-41 as a Highly Stable and pH-insensitive Heterogeneous Photo-Fenton-like Catalytic Material for the Abatement of Organic Wastewater. Industrial & Engineering Chemistry Research, 2007, 46, 3328-3333.	1.8	68
14	Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere, 2013, 93, 2839-2847.	4.2	68
15	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544.	4.8	66
16	Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil. Energy, 2016, 109, 481-494.	4.5	64
17	Incorporating Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts, 2019, 9, 127.	1.6	64
18	Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost. Environmental Science and Pollution Research, 2014, 21, 10194-10204.	2.7	63

#	Article	IF	Citations
19	Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles. Journal of Power Sources, 2014, 268, 596-603.	4.0	61
20	The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 113, 296-306.	2.6	60
21	Tin-Functionalized Wood Biochar as a Sustainable Solid Catalyst for Glucose Isomerization in Biorefinery. ACS Sustainable Chemistry and Engineering, 2019, 7, 4851-4860.	3.2	59
22	Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Chemosphere, 2017, 184, 1099-1107.	4.2	58
23	Selective conversion of cellulose into bulk chemicals over Brønsted acid-promoted ruthenium catalyst: one-pot vs. sequential process. Green Chemistry, 2012, 14, 3336.	4.6	56
24	A Review on the Production and Purification of Biomass-Derived Hydrogen Using Emerging Membrane Technologies. Catalysts, 2017, 7, 297.	1.6	56
25	Exfoliated Ni-Al LDH 2D nanosheets for intermediate temperature CO2 capture. Journal of Hazardous Materials, 2019, 374, 365-371.	6.5	55
26	An oriented, siliceous deca-dodecasil 3R (DDR) zeolite film for effective carbon capture: insight into its hydrophobic effect. Journal of Materials Chemistry A, 2017, 5, 11246-11254.	5.2	52
27	Cobalt-impregnated biochar produced from CO2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen. Chemosphere, 2019, 226, 924-933.	4.2	50
28	Healing of Microdefects in SSZ-13 Membranes via Filling with Dye Molecules and Its Effect on Dry and Wet CO ₂ Separations. Chemistry of Materials, 2018, 30, 3346-3358.	3.2	48
29	Comparing chemical-enhanced washing and waste-based stabilisation approach for soil remediation. Journal of Soils and Sediments, 2014, 14, 936-947.	1.5	46
30	Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. Journal of Environmental Chemical Engineering, 2014, 2, 1947-1955.	3.3	44
31	Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review. Catalysts, 2019, 9, 274.	1.6	44
32	Recent advances in zeolite-encapsulated metal catalysts: A suitable catalyst design for catalytic biomass conversion. Bioresource Technology, 2020, 297, 122488.	4.8	42
33	Promoting hydrolysis of ammonia borane over multiwalled carbon nanotube-supported Ru catalysts via hydrogen spillover. Catalysis Communications, 2017, 91, 10-15.	1.6	40
34	Novel bimetallic catalyst for the photo-assisted degradation of Acid Black 1 over a broad range of pH. Chemical Engineering Science, 2007, 62, 5150-5153.	1.9	39
35	Photocatalytic reduction of CO2 to hydrocarbons using bio-templated porous TiO2 architectures under UV and visible light. Chemical Engineering Journal, 2018, 347, 64-73.	6.6	39
36	An Heteroâ€Epitaxially Grown Zeolite Membrane. Angewandte Chemie - International Edition, 2019, 58, 18654-18662.	7.2	38

#	Article	IF	CITATIONS
37	A comparative study of hexacyanoferrate-based Prussian blue analogue nanocrystals for catalytic reduction of 4-nitrophenol to 4-aminophenol. Separation and Purification Technology, 2019, 218, 138-145.	3.9	38
38	A detailed product analysis of bio-oil from fast pyrolysis of demineralised and torrefied biomass. Journal of Analytical and Applied Pyrolysis, 2017, 123, 194-203.	2.6	37
39	A novel heterogeneous acid-activated clay supported copper catalyst for the photobleaching and degradation of textile organic pollutant using photo-Fenton-like reaction. Chemical Communications, 2005, , 3218.	2.2	36
40	Synthesis of mesoporous MFI zeolite via bacterial cellulose-derived carbon templating for fast adsorption of formaldehyde. Journal of Hazardous Materials, 2020, 384, 121161.	6.5	33
41	Functionalized zeolite-solvent catalytic systems for microwave-assisted dehydration of fructose to 5-hydroxymethylfurfural. Microporous and Mesoporous Materials, 2019, 284, 43-52.	2.2	32
42	Catalytic Activity of Clay-Based Titanium Silicalite-1 Composite in Cyclohexanone Ammoximation. Industrial & Composite in Cyclohexanone Ammoximation.	1.8	28
43	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14264-14274.	3.2	28
44	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	3.2	28
45	On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas. Microporous and Mesoporous Materials, 2016, 233, 70-77.	2.2	27
46	Synthesis of palladium phosphides for aqueous phase hydrodechlorination: Kinetic study and deactivation resistance. Journal of Catalysis, 2018, 366, 80-90.	3.1	27
47	Selective Conversion of Glycerol into Propylene: Single-Step versus Tandem Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 4192-4207.	3.2	26
48	Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites. Environmental Geochemistry and Health, 2017, 39, 75-88.	1.8	24
49	Heterogeneous Catalysis: Enabling a Sustainable Future. Frontiers in Catalysis, 2021, 1, .	1.8	24
50	Formulation of Reaction Kinetics for Cyclohexanone Ammoximation Catalyzed by a Clay-Based Titanium Silicalite-1 Composite in a Semibatch Process. Industrial & Engineering Chemistry Research, 2011, 50, 13703-13710.	1.8	23
51	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. Journal of Cleaner Production, 2019, 212, 420-427.	4.6	23
52	Recent Progress in CO Hydrogenation over Bimetallic Catalysts for Higher Alcohol Synthesis. ChemCatChem, 2021, 13, 111-120.	1.8	23
53	Investigation of simultaneous removal of ammonia and hydrogen sulphide from producer gas in biomass gasification by titanomagnetite. Fuel, 2014, 135, 235-242.	3.4	21
54	MoO3 modified Ni2P/Al2O3 as an efficient catalyst for crude glycerol to propylene. Catalysis Communications, 2017, 92, 80-85.	1.6	21

#	Article	IF	CITATIONS
55	Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation. Journal of Cleaner Production, 2020, 268, 122300.	4.6	20
56	Metal encapsulation in zeolite particles: A rational design of zeolite-supported catalyst with maximum site activity. Advanced Powder Technology, 2020, 31, 1274-1279.	2.0	19
57	Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by Fenton-like reaction over zerovalent iron-based catalyst. Environmental Technology (United) Tj ETQq1 1 0.784314	4 11 g/BT /Ov	e nle ck 10 Tf
58	Mono-dispersed DDR zeolite particles by seeded growth and their CO 2 , N 2 , and H 2 O adsorption properties. Chemical Engineering Journal, 2016, 306, 876-888.	6.6	18
59	Catalytically active interfaces in titania nanorod-supported copper catalysts for CO oxidation. Nano Research, 2020, 13, 533-542.	5.8	18
60	A heterostructured titanium silicalite-1 catalytic composite for cyclohexanone ammoximation. Microporous and Mesoporous Materials, 2009, 120, 368-374.	2.2	17
61	Photo-Fenton abatement of aqueous organics using metal-organic frameworks: An advancement from benchmark zeolite. Science of the Total Environment, 2018, 644, 389-397.	3.9	17
62	The unique features of non-competitive vs. competitive sorption: Tests against single volatile aromatic hydrocarbons and their quaternary mixtures. Environmental Research, 2019, 173, 508-516.	3.7	17
63	Generation and extraction of hydrogen from low-temperature water-gas-shift reaction by a ZIF-8-based membrane reactor. Microporous and Mesoporous Materials, 2019, 280, 347-356.	2.2	17
64	Thermosensitive Structural Changes and Adsorption Properties of Zeolitic Imidazolate Framework-8 (ZIF-8). Journal of Physical Chemistry C, 2015, 119, 8226-8237.	1.5	16
65	Catalytic consequences of charge-balancing cations in zeolite during photo-Fenton oxidation of formaldehyde in alkaline conditions. Separation and Purification Technology, 2014, 125, 269-274.	3.9	14
66	Study on the Synthesis of Clay-Based Titanium Silicalite-1 Catalytic Composite. Industrial & Engineering Chemistry Research, 2009, 48, 5266-5275.	1.8	13
67	Anti-poisoning core–shell metal/ZIF-8 catalyst for selective alkene hydrogenation. Catalysis Today, 2016, 265, 203-209.	2.2	13
68	Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery. Science of the Total Environment, 2020, 704, 135414.	3.9	13
69	Increasing resolution of selectivity in alkene hydrogenation via diffusion length in core-shell MFI zeolite. Catalysis Today, 2018, 314, 94-100.	2.2	12
70	CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes. Applied Catalysis B: Environmental, 2020, 262, 118265.	10.8	12
71	Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. Environmental Pollution, 2021, 279, 116899.	3.7	12
72	CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water–gas shift reaction. Chemical Engineering Journal, 2019, 377, 120278.	6.6	11

#	Article	IF	Citations
73	An Extrinsicâ€Poreâ€Containing Molecular Sieve Film: A Robust, Highâ€Throughput Membrane Filter. Angewandte Chemie - International Edition, 2021, 60, 1323-1331.	7.2	11
74	A Hybrid Zeolite Membrane-Based Breakthrough for Simultaneous CO ₂ Capture and CH ₄ Upgrading from Biogas. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2893-2907.	4.0	11
75	An Heteroâ€Epitaxially Grown Zeolite Membrane. Angewandte Chemie, 2019, 131, 18827-18835.	1.6	10
76	Stacking MFI zeolite structures for improved Sonogashira coupling reactions. Microporous and Mesoporous Materials, 2019, 276, 147-153.	2.2	10
77	Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: a perspective. Reviews in Chemical Engineering, 2020, 36, 459-491.	2.3	10
78	lonic liquid-templated synthesis of 10-MR zeolites and its origin disclosure. Microporous and Mesoporous Materials, 2020, 305, 110346.	2.2	10
79	Bio-mimicking TiO ₂ architectures for enhanced photocatalytic activity under UV and visible light. RSC Advances, 2017, 7, 39098-39108.	1.7	9
80	Kinetics and constraints of CO oxidation over hexameric copper nanocluster catalyst supported on carboxyl-functionalised MWCNT at high temperatures. Chemical Engineering Journal, 2020, 389, 124399.	6.6	8
81	Morphology control of ionic-liquid-templated ZSM-22 and ZSM-5 zeolites using a two-step process and its effect on toluene methylation. Microporous and Mesoporous Materials, 2021, 328, 111475.	2.2	8
82	Graphitic Carbon Nitride/Copperâ€Iron Oxide Composite for Effective Fenton Degradation of Ciprofloxacin at Nearâ€Neutral pH. ChemistrySelect, 2020, 5, 8198-8206.	0.7	6
83	Ni/Hydrochar Nanostructures Derived from Biomass as Catalysts for H2 Production through Aqueous-Phase Reforming of Methanol. ACS Applied Nano Materials, 2021, 4, 8958-8971.	2.4	6
84	Effect of the Presence of HCl on Simultaneous CO2 Capture and Contaminants Removal from Simulated Biomass Gasification Producer Gas by CaO-Fe2O3 Sorbent in Calcium Looping Cycles. Energies, 2021, 14, 8167.	1.6	5
85	An Extrinsicâ€Poreâ€Containing Molecular Sieve Film: A Robust, Highâ€Throughput Membrane Filter. Angewandte Chemie, 2021, 133, 1343-1351.	1.6	4
86	Solution-mediated transformation of natural zeolite to ANA and CAN topological structures with altered active sites for ethanol conversion. Advanced Powder Technology, 2021, 32, 4155-4166.	2.0	4
87	Copper-Promoted Cobalt/Titania Nanorod Catalyst for CO Hydrogenation to Hydrocarbons. Catalysis Letters, 2021, 151, 2492-2501.	1.4	3
88	Unveiling the elusive role of tetraethyl orthosilicate hydrolysis in ionic-liquid-templated zeolite synthesis. Materials Today Chemistry, 2022, 23, 100658.	1.7	2
89	Application of activated carbon derived from bacterial cellulose for mesoporous HZSM-5 catalyst synthesis and performances of catalyst in bioethanol dehydration. Biomass and Bioenergy, 2022, 160, 106440.	2.9	2
90	A nano-sized catalytic architecture composed of SiO/sub 2/-TiO/sub 2/ particle and carbon nanofibers., 2006,,.		1

ALEX CHI-KIN YIP

#	Article	IF	CITATIONS
91	Comparison of catalytic consequences of ionic liquid-templated ZSM-22 and ZSM-5 zeolites in propene dimerization. Microporous and Mesoporous Materials, 2022, 337, 111941.	2.2	1
92	An anti-humidity palladium-containing MFI composite as a robust ethylene scavenger. Microporous and Mesoporous Materials, 2022, 341, 112090.	2.2	1