List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9116251/publications.pdf

Version: 2024-02-01

		186209	197736
57	4,554 citations	28	49
papers	citations	h-index	g-index
57	57	57	4218
all docs	docs citations	times ranked	citing authors
un doco	doco citationo	cimeo funce	

#	Article	IF	CITATIONS
1	The 2015 Ukraine Blackout: Implications for False Data Injection Attacks. IEEE Transactions on Power Systems, 2017, 32, 3317-3318.	4.6	783
2	A Review of False Data Injection Attacks Against Modern Power Systems. IEEE Transactions on Smart Grid, 2017, 8, 1630-1638.	6.2	652
3	Short-Term Residential Load Forecasting Based on Resident Behaviour Learning. IEEE Transactions on Power Systems, 2018, 33, 1087-1088.	4.6	440
4	Distributed Blockchain-Based Data Protection Framework for Modern Power Systems Against Cyber Attacks. IEEE Transactions on Smart Grid, 2019, 10, 3162-3173.	6.2	272
5	A Distributed Electricity Trading System in Active Distribution Networks Based on Multi-Agent Coalition and Blockchain. IEEE Transactions on Power Systems, 2019, 34, 4097-4108.	4.6	217
6	Coordinated Operational Planning for Wind Farm With Battery Energy Storage System. IEEE Transactions on Sustainable Energy, 2015, 6, 253-262.	5.9	198
7	Stochastic Collaborative Planning of Electric Vehicle Charging Stations and Power Distribution System. IEEE Transactions on Industrial Informatics, 2018, 14, 321-331.	7.2	140
8	Blockchain: a secure, decentralized, trusted cyber infrastructure solution for future energy systems. Journal of Modern Power Systems and Clean Energy, 2018, 6, 958-967.	3.3	139
9	A Multistage Home Energy Management System With Residential Photovoltaic Penetration. IEEE Transactions on Industrial Informatics, 2019, 15, 116-126.	7.2	110
10	Decision-Making for Electricity Retailers: A Brief Survey. IEEE Transactions on Smart Grid, 2018, 9, 4140-4153.	6.2	102
11	Optimal Home Energy Management System With Demand Charge Tariff and Appliance Operational Dependencies. IEEE Transactions on Smart Grid, 2020, 11, 4-14.	6.2	100
12	Shortâ€term operational planning framework for virtual power plants with high renewable penetrations. IET Renewable Power Generation, 2016, 10, 623-633.	1.7	88
13	Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Transactions on Sustainable Energy, 2018, 9, 1051-1060.	5.9	87
14	Operational Planning of Centralized Charging Stations Utilizing Second-Life Battery Energy Storage Systems. IEEE Transactions on Sustainable Energy, 2021, 12, 387-399.	5.9	82
15	Cloud-Based Information Infrastructure for Next-Generation Power Grid: Conception, Architecture, and Applications. IEEE Transactions on Smart Grid, 2016, 7, 1896-1912.	6.2	77
16	A Framework for Cyber-Topology Attacks: Line-Switching and New Attack Scenarios. IEEE Transactions on Smart Grid, 2019, 10, 1704-1712.	6.2	77
17	Optimal Dispatch of Air Conditioner Loads in Southern China Region by Direct Load Control. IEEE Transactions on Smart Grid, 2016, 7, 439-450.	6.2	71
18	Generalized FDIA-Based Cyber Topology Attack With Application to the Australian Electricity Market Trading Mechanism. IEEE Transactions on Smart Grid, 2018, 9, 3820-3829.	6.2	68

#	Article	IF	Citations
19	An Operational Planning Framework for Large-Scale Thermostatically Controlled Load Dispatch. IEEE Transactions on Industrial Informatics, 2017, 13, 217-227.	7.2	66
20	Power system fault diagnosis based on history driven differential evolution and stochastic time domain simulation. Information Sciences, 2014, 275, 13-29.	4.0	60
21	Impact analysis of false data injection attacks on power system static security assessment. Journal of Modern Power Systems and Clean Energy, 2016, 4, 496-505.	3.3	58
22	Nonâ€intrusive energy saving appliance recommender system for smart grid residential users. IET Generation, Transmission and Distribution, 2017, 11, 1786-1793.	1.4	57
23	Social Information Filtering-Based Electricity Retail Plan Recommender System for Smart Grid End Users. IEEE Transactions on Smart Grid, 2019, 10, 95-104.	6.2	56
24	A new metaheuristic algorithm for real-parameter optimization: Natural aggregation algorithm. , 2016,		50
25	Hierarchical Energy Management System for Home Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 5536-5546.	6.2	48
26	Joint planning of active distribution networks considering renewable power uncertainty. International Journal of Electrical Power and Energy Systems, 2019, 110, 696-704.	3.3	44
27	Coordinated residential energy resource scheduling with vehicleâ€toâ€home and high photovoltaic penetrations. IET Renewable Power Generation, 2018, 12, 625-632.	1.7	33
28	Personalized Residential Energy Usage Recommendation System Based on Load Monitoring and Collaborative Filtering. IEEE Transactions on Industrial Informatics, 2021, 17, 1253-1262.	7.2	32
29	Distributed optimal dispatch of virtual power plant based on ELM transformation. Journal of Industrial and Management Optimization, 2014, 10, 1297-1318.	0.8	30
30	Natural aggregation algorithm: A new efficient metaheuristic tool for power system optimizations. , 2016, , .		29
31	Direct load control by distributed imperialist competitive algorithm. Journal of Modern Power Systems and Clean Energy, 2014, 2, 385-395.	3.3	24
32	Service Recommendation in Smart Grid: Vision, Technologies, and Applications. , 2016, , .		22
33	A novel technique for the optimal design of offshore wind farm electrical layout. Journal of Modern Power Systems and Clean Energy, 2013, 1, 258-263.	3.3	21
34	A Penalty Scheme for Mitigating Uninstructed Deviation of Generation Outputs From Variable Renewables in a Distribution Market. IEEE Transactions on Smart Grid, 2020, 11, 4056-4069.	6.2	21
35	Optimal integration of MBESSs/SBESSs in distribution systems with renewables. IET Renewable Power Generation, 2018, 12, 1172-1179.	1.7	19
36	Optimal operation scheduling for microgrid with high penetrations of solar power and thermostatically controlled loads. Science and Technology for the Built Environment, 2016, 22, 666-673.	0.8	18

#	Article	IF	CITATIONS
37	A day-ahead scheduling framework for thermostatically controlled loads with thermal inertia and thermal comfort model. Journal of Modern Power Systems and Clean Energy, 2019, 7, 568-578.	3.3	18
38	Benefits of Home Energy Storage Utilization: An Australian Case Study of Demand Charge Practices in Residential Sector. IEEE Transactions on Smart Grid, 2021, 12, 3086-3096.	6.2	17
39	Distributed residential energy resource scheduling with renewable uncertainties. IET Generation, Transmission and Distribution, 2018, 12, 2770-2777.	1.4	14
40	Short-Term Residential Load Forecasting Based on Federated Learning and Load Clustering., 2021,,.		13
41	Rolling horizon optimization for real-time operation of thermostatically controlled load aggregator. Journal of Modern Power Systems and Clean Energy, 2017, 5, 947-958.	3.3	12
42	Coordinated residential energy resource scheduling with human thermal comfort modelling and renewable uncertainties. IET Generation, Transmission and Distribution, 2019, 13, 1768-1776.	1.4	12
43	Many-Objective HEMS Based on Multi-Scale Occupant Satisfaction Modelling and Second-Life BESS Utilization. IEEE Transactions on Sustainable Energy, 2022, 13, 934-947.	5.9	12
44	Hierarchical energy management for community microgrids with integration of secondâ€ife battery energy storage systems and photovoltaic solar energy. IET Energy Systems Integration, 2022, 4, 206-219.	1.1	11
45	Stochastic residential energy resource scheduling by multi-objective natural aggregation algorithm. , 2017, , .		10
46	A social relationship preference aware peerâ€toâ€peer energy market for urban energy prosumers and consumers. IET Renewable Power Generation, 2022, 16, 688-699.	1.7	9
47	Power Big Data: New Assets of Electric Power Utilities. Journal of Energy Engineering - ASCE, 2019, 145,	1.0	6
48	Modeling and Defending Advanced Metering Infrastructure Subjected to Distributed Denial-of-Service Attacks. IEEE Transactions on Network Science and Engineering, 2021, 8, 2106-2117.	4.1	6
49	Hierarchical energy management scheme for residential communities under grid outage event. IET Smart Grid, 2020, 3, 174-181.	1.5	6
50	Aggregating buildings as a virtual power plant: Architectural design, supporting technologies, and case studies. IET Energy Systems Integration, 2022, 4, 423-435.	1.1	5
51	Energy management of Internet data centers in multiple local energy markets. Electric Power Systems Research, 2022, 205, 107760.	2.1	3
52	Realâ€time energy management system for public laundries with demand charge tariff. Journal of Engineering, 2021, 2021, 49-59.	0.6	2
53	Integrated Household Appliance Scheduling With Modeling of Occupant Satisfaction and Appliance Heat Gain. Frontiers in Energy Research, 2021, 9, .	1.2	2
54	Personalized Home BESS Recommender System Based on Neural Collaborative Filtering. , 2022, , .		2

#	Article	IF	CITATIONS
55	Dualâ€blockchainâ€based P2P energy trading system with an improved optimistic rollup mechanism. IET Smart Grid, 2022, 5, 246-259.	1.5	2
56	Load forecasting in the short-term scheduling of DERs. , 2021, , 389-417.		1
57	Mobile energyâ€toâ€home integration: An adaption of mobility as aÂservice in urban energy systems. IET Energy Systems Integration, 0, , .	1.1	O