Rita Sinka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115693/publications.pdf

Version: 2024-02-01

		567144	526166
28	1,386	15	27
papers	citations	h-index	g-index
28	28	28	1985
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The interacting rotifer-biopolymers are anti- and disaggregating agents for human-type beta-amyloid in vitro. International Journal of Biological Macromolecules, 2022, 201, 262-269.	3.6	2
2	Particle-dependent reproduction and exogenic biopolymer secretion of protozoa co-cultured rotifers. International Journal of Biological Macromolecules, 2022, 211, 669-677.	3.6	1
3	Analysis of Drosophila Atg8 proteins reveals multiple lipidation-independent roles. Autophagy, 2021, 17, 2565-2575.	4.3	27
4	Deciphering of <i>Candida parapsilosis</i> induced immune response in <i>Drosophila melanogaster</i> . Virulence, 2021, 12, 2571-2582.	1.8	2
5	The nuclear activity of the actinâ€binding Moesin protein is necessary for gene expression in <i>Drosophila</i> . FEBS Journal, 2021, 288, 4812-4832.	2.2	5
6	The tumor suppressor archipelago E3 ligase is required for spermatid differentiation in Drosophila testis. Scientific Reports, 2021, 11, 8422.	1.6	4
7	Microtubule Organizing Centers Contain Testis-Specific Î ³ -TuRC Proteins in Spermatids of Drosophila. Frontiers in Cell and Developmental Biology, 2021, 9, 727264.	1.8	10
8	CRISPR-Cas9-Based Mutagenesis of the Mucormycosis-Causing Fungus Lichtheimia corymbifera. International Journal of Molecular Sciences, 2020, 21, 3727.	1.8	11
9	Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes, 2019, 10, 173.	1.0	5
10	Sperm-Leucylaminopeptidases are required for male fertility as structural components of mitochondrial paracrystalline material in Drosophila melanogaster sperm. PLoS Genetics, 2019, 15, e1007987.	1.5	24
11	Analysis of Drosophila melanogaster testis transcriptome. BMC Genomics, 2018, 19, 697.	1.2	53
12	Drosophila <i>small ovary</i> gene is required for transposon silencing and heterochromatin organisation and ensures germline stem cell maintenance and differentiation. Development (Cambridge), 2018, 145, .	1.2	27
13	South Indian Isolates of the Fusarium solani Species Complex From Clinical and Environmental Samples: Identification, Antifungal Susceptibilities, and Virulence. Frontiers in Microbiology, 2018, 9, 1052.	1.5	28
14	The role of acroblast formation during <i>Drosophila </i> spermatogenesis. Biology Open, 2016, 5, 1102-1110.	0.6	15
15	Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in <i>Drosophila</i> . Open Biology, 2016, 6, 150169.	1.5	26
16	Testis-Specific Bb8 Is Essential in the Development of Spermatid Mitochondria. PLoS ONE, 2016, 11, e0161289.	1.1	19
17	Toward a Comprehensive Map of the Effectors of Rab GTPases. Developmental Cell, 2014, 31, 358-373.	3.1	224
18	A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO Journal, 2010, 29, 304-314.	3.5	100

#	Article	IF	CITATIONS
19	Spatial and Functional Relationship of GGAs and APâ€l in <i>Drosophila</i> and HeLa Cells. Traffic, 2009, 10, 1696-1710.	1.3	77
20	Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. Journal of Cell Biology, 2008, 183, 607-615.	2.3	167
21	Multiple Protein Phosphatases Are Required for Mitosis in Drosophila. Current Biology, 2007, 17, 293-303.	1.8	119
22	Autolytic activation and localization in Schneider cells (S2) of calpain B from Drosophila. Biochemical Journal, 2004, 378, 299-305.	1.7	18
23	The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Letters, 2003, 543, 154-158.	1.3	93
24	Molecular cloning and RNA expression of a novel Drosophila calpain, Calpain C. Biochemical and Biophysical Research Communications, 2003, 303, 343-349.	1.0	15
25	Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2622-2627.	3.3	148
26	MOESIN Crosslinks Actin and Cell Membrane in Drosophila Oocytes and Is Required for OSKAR Anchoring. Current Biology, 2002, 12, 2060-2065.	1.8	85
27	poirot, a new regulatory gene of Drosophila oskar acts at the level of the short Oskar protein isoform. Development (Cambridge), 2002, 129, 3469-78.	1.2	5
28	An Interaction Type of Genetic Screen Reveals a Role of the <i>Rab11</i> Gene in <i>oskar</i> mRNA Localization in the Developing <i>Drosophila melanogaster</i> Oocyte. Genetics, 2001, 158, 1177-1188.	1.2	76