
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters. Defence Technology, 2023, 24, 83-108.	2.1	9
2	Three-dimensional mesoscopic investigation on equation of state for dry sand under shock compression. International Journal of Impact Engineering, 2022, 160, 104060.	2.4	2
3	Fracture properties of steel fiber reinforced concrete: Size effect study via mesoscale modelling approach. Engineering Fracture Mechanics, 2022, 260, 108193.	2.0	33
4	Three-Dimensional Mesoscopic Investigation on the Impact of Specimen Geometry and Bearing Strip Size on the Splitting-Tensile Properties of Coral Aggregate Concrete. Engineering, 2022, 17, 110-122.	3.2	10
5	Three-dimensional mesoscale modelling of the compressive behaviors of coral sand. Granular Matter, 2022, 24, 1.	1.1	2
6	Robustness of Post-Tensioned Concrete Beam-Column Subassemblies under Various Column Removal Scenarios. Journal of Structural Engineering, 2022, 148, .	1.7	15
7	Numerical simulation of overpressure loads generated by gas explosions in utility tunnels. Chemical Engineering Research and Design, 2022, 161, 100-117.	2.7	18
8	Failure modes of concrete gravity dam subjected to near-field underwater explosion: Centrifuge test and numerical simulation. Engineering Failure Analysis, 2022, 137, 106243.	1.8	15
9	Blast resistance of a folded arch cross-section immersed tunnel subjected to internal explosion. Tunnelling and Underground Space Technology, 2022, 125, 104521.	3.0	6
10	Blast resistance of prestressed steel-grouting composite beams under close-in explosions: Experiment and numerical analysis. Advances in Structural Engineering, 2022, 25, 1519-1534.	1.2	2
11	Response Characteristics of Gabion Wall under Large TNT-Equivalent Explosives. Journal of Structural Engineering, 2022, 148, .	1.7	2
12	Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges. International Journal of Impact Engineering, 2022, 168, 104298.	2.4	5
13	Gas explosions of methane-air mixtures in a large-scale tube. Fuel, 2021, 285, 119239.	3.4	34
14	Experimental study of the dynamic response of architectural glasses under vented explosion loads of methane–air mixtures. International Journal of Impact Engineering, 2021, 148, 103749.	2.4	3
15	Discussion of "Evaluation of Wave Dissipation in Sand under Impact Loading―by Yaru Lv, Charles W. W. Ng, and Yuan Wang. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, 07020028.	1.5	0
16	Study of CFRP retrofitted RC column under close-in explosion. Engineering Structures, 2021, 227, 111431.	2.6	19
17	Experimental Study on the Residual Seismic Resistance of UHPCC Filled Steel Tube (UHPCC-FST) After Contact Explosion. , 2021, , 397-429.		0
18	Experimental and Numerical Study of UHPCC-FST Columns Subjected to Close-Range Explosion. , 2021, , 369-395.		0

#	Article	IF	CITATIONS
19	Constitutive Modelling of UHPCC Material Under Impact and Blast Loadings. , 2021, , 475-504.		Ο
20	Penetration of an optimal depleted uranium liner of a shaped charge: A numerical simulation method. International Journal of Protective Structures, 2021, 12, 396-413.	1.4	0
21	Impact Resistance of Armsector Steel/Ceramic/UHPCC Layered Composite Targets Against 30CrMnSiNi2A Steel Projectiles. , 2021, , 187-235.		0
22	Impact Resistance of Basalt Aggregated UHP-SFRC/Fabric Composite Panels Against Small Caliber Arm. , 2021, , 163-186.		0
23	Residual Axial Capacity of UHPCC-FST Column Under Contact Explosion. , 2021, , 319-367.		0
24	Performance of utility tunnels under gas explosion loads. Tunnelling and Underground Space Technology, 2021, 109, 103762.	3.0	16
25	Mesoscopic modelling of concrete material under static and dynamic loadings: A review. Construction and Building Materials, 2021, 278, 122419.	3.2	53
26	3D mesoscopic modelling on the dynamic properties of coral aggregate concrete under direct tension. Engineering Fracture Mechanics, 2021, 247, 107636.	2.0	12
27	Modelling damage mechanisms of concrete under high confinement pressure. International Journal of Impact Engineering, 2021, 150, 103815.	2.4	21
28	Experimental and mesoscopic investigation on the dynamic properties of coral aggregate concrete in compression. Science China Technological Sciences, 2021, 64, 1153-1166.	2.0	13
29	Constitutive modelling of UHPCC material under impact and blast loadings. International Journal of Impact Engineering, 2021, 153, 103860.	2.4	19
30	Full-Scale Experimental Study of a Reinforced Concrete Bridge Pier under Truck Collision. Journal of Bridge Engineering, 2021, 26, .	1.4	17
31	Peridynamics modelling of dynamic tensile failure in concrete. International Journal of Impact Engineering, 2021, 155, 103918.	2.4	16
32	Specimen size effect on the splitting-tensile behavior of coral aggregate concrete: A 3D mesoscopic study. Engineering Failure Analysis, 2021, 127, 105395.	1.8	11
33	A plastic-damage model for rock-like materials focused on damage mechanisms under high pressure. Computers and Geotechnics, 2021, 137, 104263.	2.3	14
34	Experimental and mesoscopic study of dynamic tensile properties of concrete using direct-tension technique. International Journal of Impact Engineering, 2021, 155, 103895.	2.4	19
35	Investigation of a semi-empirical load model of natural gas explosion in vented spaces. Journal of Safety Science and Resilience, 2021, 2, 157-171.	1.3	2
36	3D mesoscopic analysis on the compressive behavior of coral aggregate concrete accounting for coarse aggregate volume and maximum aggregate size. Composite Structures, 2021, 273, 114271.	3.1	23

#	Article	IF	CITATIONS
37	Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness. International Journal of Impact Engineering, 2021, 156, 103931.	2.4	16
38	An efficient three-dimensional damage-based nonlocal model for dynamic tensile failure in concrete. International Journal of Impact Engineering, 2021, 156, 103965.	2.4	2
39	Three-dimensional mesoscopic modelling of shock wave propagation and attenuation in gravel granular filter. Powder Technology, 2021, 394, 838-852.	2.1	5
40	Dynamic Responses of Reinforced UHPCC Members Under Low-Velocity Lateral Impact. , 2021, , 271-318.		0
41	Protective effects of gabion wall against blast waves from large TNT-equivalent explosions. Engineering Structures, 2021, 249, 113389.	2.6	17
42	Study of Crater in the Gobi Desert Induced by Ground Explosion of Large Amounts of TNT Explosive up to 10 Tons. Shock and Vibration, 2021, 2021, 1-17.	0.3	0
43	Mesoscopic modelling of UHPCC material under dynamic tensile loadings. Defence Technology, 2021, , .	2.1	Ο
44	Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading. Composite Structures, 2020, 241, 110859.	3.1	19
45	Quasi-static and dynamic behavior of precast concrete frames with high performance dry connections subjected to loss of a penultimate column scenario. Engineering Structures, 2020, 205, 110115.	2.6	60
46	Numerical prediction of dynamic tensile failure in concrete by a corrected strain-rate dependent nonlocal material model. International Journal of Impact Engineering, 2020, 137, 103445.	2.4	33
47	Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse. Journal of Building Engineering, 2020, 29, 101109.	1.6	61
48	Equation of state for saturated concrete: A mesoscopic study. International Journal of Impact Engineering, 2020, 144, 103669.	2.4	16
49	Experimental investigation of rupture and dispersion characteristics of float glass subjected to vented explosion loads of methane–air mixtures. International Journal of Impact Engineering, 2020, 144, 103651.	2.4	4
50	The influence of free water content on ballistic performances of concrete targets. International Journal of Impact Engineering, 2020, 139, 103530.	2.4	20
51	A computational constitutive model for rock in hydrocode. International Journal of Impact Engineering, 2020, 145, 103687.	2.4	25
52	Assessment of Cascading Accidents of Frostbite, Fire, and Explosion Caused by Liquefied Natural Gas Leakage. Advances in Civil Engineering, 2020, 2020, 1-14.	0.4	4
53	Experimental study of the dynamic response of PVB laminated glass under vented explosion loads of methane–air mixtures. International Journal of Impact Engineering, 2020, 143, 103588.	2.4	14
54	Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model. International Journal of Impact Engineering, 2020, 144, 103633.	2.4	18

#	Article	IF	CITATIONS
55	Uniform loading on the reinforced concrete beam produced by the specific cylinder-shaped rubber bags fully filled with air or water. Advances in Structural Engineering, 2020, 23, 1934-1947.	1.2	0
56	Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain. Computers and Geotechnics, 2020, 122, 103511.	2.3	28
57	Experimental investigation and numerical analysis of RC beams shear strengthened with FRP/ECC composite layer. Composite Structures, 2020, 246, 112436.	3.1	53
58	Analysis of Hazard Area of Dispersion Caused by Leakage from Underground Gas-Storage Caverns in Salt Rock. Advances in Civil Engineering, 2020, 2020, 1-11.	0.4	1
59	Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the Smooth Particle Hydrodynamics method. Scientia Sinica: Physica, Mechanica Et Astronomica, 2020, 50, 024605.	0.2	3
60	Deceleration time of projectile penetration/perforation into a concrete target: Experiment and discussions. Advances in Structural Engineering, 2019, 22, 112-125.	1.2	12
61	A new damage-based nonlocal model for dynamic tensile failure of concrete material. International Journal of Impact Engineering, 2019, 132, 103336.	2.4	34
62	Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder. International Journal of Impact Engineering, 2019, 132, 103326.	2.4	35
63	Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections. Engineering Structures, 2019, 198, 109552.	2.6	52
64	A comparative study for the impact performance of shaped charge JET on UHPC targets. Defence Technology, 2019, 15, 506-518.	2.1	26
65	Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions. International Journal of Impact Engineering, 2019, 129, 66-79.	2.4	46
66	Generation of pressure–impulse diagrams for failure modes of RC columns subjected to blast loads. Engineering Failure Analysis, 2019, 100, 520-535.	1.8	14
67	Experimental and mesoscopic investigation of spherical ceramic particle concrete under static and impact loading. International Journal of Impact Engineering, 2019, 128, 37-45.	2.4	12
68	Blast resistance of externally prestressed RC Beam: A theoretical approach. Engineering Structures, 2019, 179, 211-224.	2.6	11
69	Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave. International Journal of Impact Engineering, 2019, 125, 63-82.	2.4	19
70	A note on the impact resistance of concrete target against rigid projectile. International Journal of Protective Structures, 2018, 9, 397-411.	1.4	1
71	The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 045008.	0.8	9
72	Numerical simulation of shock wave propagation in dry sand based on a 3D mesoscopic model. International Journal of Impact Engineering, 2018, 117, 102-112.	2.4	14

#	Article	IF	CITATIONS
73	An improved nonlinear analytical approach to generate fragility curves of reinforced concrete columns subjected to blast loads. Advances in Structural Engineering, 2018, 21, 396-414.	1.2	16
74	Numerical simulation of the effects of falling rock's shape and impact pose on impact force and response of RC slabs. Construction and Building Materials, 2018, 160, 497-504.	3.2	34
75	A Review of the Torsional Split Hopkinson Bar. Advances in Civil Engineering, 2018, 2018, 1-17.	0.4	12
76	Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings. International Journal of Impact Engineering, 2018, 122, 318-332.	2.4	26
77	Numerical analysis of collision between a tractor-trailer and bridge pier. International Journal of Protective Structures, 2018, 9, 484-503.	1.4	9
78	A new material model for concrete subjected to intense dynamic loadings. International Journal of Impact Engineering, 2018, 120, 60-78.	2.4	101
79	Dynamic responses of reinforced concrete beams under double-end-initiated close-in explosion. Defence Technology, 2018, 14, 527-539.	2.1	19
80	Experimental and computational Fluid Dynamics study of separation gap effect on gas explosion mitigation for methane storage tanks. Journal of Loss Prevention in the Process Industries, 2018, 55, 359-380.	1.7	24
81	Mesoscopic investigation of layered graded metallic foams under dynamic compaction. Advances in Structural Engineering, 2018, 21, 2081-2098.	1.2	5
82	Blast mitigation effect of the layered concrete structure with an air gap: A numerical approach. International Journal of Protective Structures, 2018, 9, 432-460.	1.4	6
83	Blast loading model of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder. Engineering Structures, 2018, 175, 304-321.	2.6	35
84	Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions. International Journal of Impact Engineering, 2017, 104, 107-126.	2.4	59
85	Modified K&C model for cratering and scabbing of concrete slabs under projectile impact. International Journal of Impact Engineering, 2017, 108, 217-228.	2.4	81
86	Study of autoclaved aerated concrete masonry walls under vented gas explosions. Engineering Structures, 2017, 141, 444-460.	2.6	52
87	Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD. Chemical Engineering Research and Design, 2017, 109, 489-508.	2.7	51
88	ExperimentalÂstudy of strain rate effects on normal weight concrete after exposure to elevated temperature. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	45
89	Concrete Structures Under Projectile Impact. , 2017, , .		4
90	Experimental study of large-sized concrete filled steel tube columns under blast load. Construction and Building Materials, 2017, 134, 131-141.	3.2	50

#	Article	IF	CITATIONS
91	Numerical predictions of concrete slabs under contact explosion by modified K&C material model. Construction and Building Materials, 2017, 155, 1013-1024.	3.2	60
92	Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions. Engineering Structures, 2017, 152, 901-919.	2.6	41
93	A comparison of strain-rate enhancement approaches for concrete material subjected to high strain-rate. International Journal of Protective Structures, 2017, 8, 155-176.	1.4	13
94	Numerical simulations of shaped charge jet penetration into concrete-like targets. International Journal of Protective Structures, 2017, 8, 237-259.	1.4	10
95	Parameters of Holmquist–Johnson–Cook model for high-strength concrete-like materials under projectile impact. International Journal of Protective Structures, 2017, 8, 352-367.	1.4	50
96	Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates. Polymer Testing, 2017, 63, 54-64.	2.3	24
97	A concrete constitutive model considering coupled effects of high temperature and high strain rate. International Journal of Impact Engineering, 2017, 101, 66-77.	2.4	54
98	Response of closed-cell aluminum foams under static and impact loading: Experimental and mesoscopic numerical analysis. International Journal of Impact Engineering, 2017, 110, 382-394.	2.4	33
99	Critical Impact Yaw for Long-Rod Penetrators. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	2
100	Finite Spherical Cavity Expansion Method for Layering Effect. Acta Mechanica Solida Sinica, 2016, 29, 642-654.	1.0	4
101	Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading. Engineering Structures, 2016, 118, 97-107.	2.6	122
102	Experimental investigation on the deflagration load under unconfined methane-air explosions. Fuel, 2016, 185, 565-576.	3.4	36
103	A modified layered-section method for responses of fire-damaged reinforced concrete beams under static and blast loads. International Journal of Protective Structures, 2016, 7, 495-517.	1.4	9
104	3D numerical modelling of solid particles with randomness in shape considering convexity and concavity. Powder Technology, 2016, 301, 131-140.	2.1	29
105	Experimental and numerical investigation into RC beams subjected to blast after exposure to fire. International Journal of Impact Engineering, 2016, 97, 29-45.	2.4	52
106	Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model. International Journal of Impact Engineering, 2016, 95, 61-71.	2.4	131
107	Experimental study of CFDST columns infilled with UHPC under close-range blast loading. International Journal of Impact Engineering, 2016, 93, 184-195.	2.4	68
108	Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane–air mixtures. Fuel, 2016, 175, 40-48.	3.4	118

#	Article	IF	CITATIONS
109	Numerical investigation of a water barrier against blast loadings. Engineering Structures, 2016, 111, 199-216.	2.6	25
110	Mitigation of blast loadings on structures by an anti-blast plastic water wall. Journal of Central South University, 2016, 23, 461-469.	1.2	12
111	Mesoscopic investigation of the sand particulate system subjected to intense dynamic loadings. International Journal of Impact Engineering, 2016, 89, 62-71.	2.4	16
112	3D Numerical Investigation of Cement Mortar with Microscopic Defects at High Strain Rates. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	6
113	Blast Mitigation Effects of Water Walls: Numerical Simulation and Analytical Approach. International Journal of Protective Structures, 2015, 6, 551-565.	1.4	7
114	Numerical investigation into dynamic responses of RC columns subjected for fire and blast. Journal of Loss Prevention in the Process Industries, 2015, 34, 10-21.	1.7	34
115	Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Composite Structures, 2015, 124, 409-420.	3.1	56
116	A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings. International Journal of Impact Engineering, 2015, 82, 103-112.	2.4	42
117	Combined effects of high temperature and high strain rate on normal weight concrete. International Journal of Impact Engineering, 2015, 86, 40-56.	2.4	102
118	Performance based investigation on the construction of anti-blast water wall. International Journal of Impact Engineering, 2015, 81, 17-33.	2.4	56
119	Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part I: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 933-942.	1.5	14
120	AN IMPROVED ANALYTICAL METHOD FOR RESTRAINED RC STRUCTURES SUBJECTED TO STATIC AND DYNAMIC LOADS. International Journal of Structural Stability and Dynamics, 2014, 14, 1350052.	1.5	20
121	An algorithm for the grain-level modelling of a dry sand particulate system. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 055021.	0.8	16
122	Prediction of projectile penetration and perforation by finite cavity expansion method with the free-surface effect. Acta Mechanica Solida Sinica, 2014, 27, 597-611.	1.0	16
123	Responses of Masonry Infill Walls Retrofitted with CFRP, Steel Wire Mesh and Laminated Bars to Blast Loadings. Advances in Structural Engineering, 2014, 17, 817-836.	1.2	49
124	Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 943-955.	1.5	10
125	3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble. International Journal of Impact Engineering, 2014, 63, 118-128.	2.4	46
126	Numerical Study of the Wake Separation and Reattachment Effect on the Trajectory of a Hard Projectile. International Journal of Protective Structures, 2014, 5, 97-117.	1.4	8

#	Article	IF	CITATIONS
127	A New Elasto-Viscoplastic Damage Model Combined with the Generalized Hoek–Brown Failure Criterion for Bedded Rock Salt and its Application. Rock Mechanics and Rock Engineering, 2013, 46, 53-66.	2.6	53
128	An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. II: A sample computation and parametric study. Journal of Loss Prevention in the Process Industries, 2013, 26, 68-73.	1.7	4
129	An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. I: Models and validation. Journal of Loss Prevention in the Process Industries, 2013, 26, 74-81.	1.7	14
130	Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading. Construction and Building Materials, 2013, 44, 118-132.	3.2	90
131	Semi-theoretical analyses of the concrete plate perforated by a rigid projectile. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 1630-1643.	1.5	33
132	Nonlinear Analysis of Blast Performance of Partially Prestressed RC Beams. International Journal of Protective Structures, 2011, 2, 295-314.	1.4	13
133	Statistical evaluation of five failure criteria for intact salt rock. Journal of Central South University, 2011, 18, 925-931.	1.2	5
134	Model tests on anomalous low friction and pendulum-type wave phenomena. Progress in Natural Science: Materials International, 2009, 19, 1805-1820.	1.8	5
135	Mechanism of zonal disintegration phenomenon in enclosing rock mass around deep tunnels. Central South University, 2009, 16, 303-311.	0.5	13
136	Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels—Elasto-plastic analysis of stress field of enclosing rock mass. Mining Science and Technology, 2009, 19, 84-90.	0.3	5
137	Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels — mechanism and discussion of characteristic parameters. Mining Science and Technology, 2009, 19, 306-311.	0.3	4
138	Mechanism of anomalous low friction phenomenon in deep block rock mass. Mining Science and Technology, 2009, 19, 409-419.	0.3	2
139	Mechanism of Pendulum-type wave phenomenon in deep block rock mass. Mining Science and Technology, 2009, 19, 699-708.	0.3	2
140	Rate-sensitive numerical analysis of dynamic responses of arched blast doors subjected to blast loading. Transactions of Tianjin University, 2008, 14, 348-352.	3.3	5
141	Numerical simulation of water mitigation effects on shock wave with SPH method. Transactions of Tianjin University, 2008, 14, 387-390.	3.3	2
142	Evaluation of blast-resistant performance predicted by damaged plasticity model for concrete. Transactions of Tianjin University, 2008, 14, 414-421.	3.3	11
143	Experimental investigation into magnetorheological damper subjected to impact loads. Transactions of Tianjin University, 2008, 14, 540-544.	3.3	14
144	Zonal disintegration phenomenon in rock mass surrounding deep tunnels. Mining Science and Technology, 2008, 18, 187-193.	0.8	14

#	Article	IF	CITATIONS
145	Numerical and experimental investigation into plane charge explosion technique. International Journal of Impact Engineering, 2008, 35, 1179-1185.	2.4	5
146	Evaluation of the Impact Formulae for Rigid Projectile Striking on Concrete Target. Advanced Materials Research, 0, 368-373, 894-900.	0.3	1
147	Development of a large-scale torsional split Hopkinson tube for dynamic shear test of mortar material. Journal of Sustainable Cement-Based Materials, 0, , 1-11.	1.7	0